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ABSTRACT

Graph kernels used to be the dominant approach to feature engi-
neering for structured data, which are superseded by modern GNNs
as the former lacks learnability. Recently, a suite of Kernel Convolu-
tion Networks (KCNs) successfully revitalized graph kernels by in-
troducing learnability, which convolves input with learnable hidden
graphs using a certain graph kernel. The randomwalk kernel (RWK)
has been used as the default kernel in many KCNs, gaining increas-
ing attention. In this paper, we first revisit the RWK and its current
usage in KCNs, revealing several shortcomings of the existing de-
signs, and propose an improved graph kernel RWK+, by introducing
color-matching random walks and deriving its efficient computa-
tion. We then propose RWK+CN, a KCN that uses RWK+ as the core
kernel to learn descriptive graph features with an unsupervised ob-
jective, which can not be achieved by GNNs. Further, by unrolling
RWK+, we discover its connection with a regular GCN layer, and
propose a novel GNN layer RWK+Conv. In the first part of experi-
ments, we demonstrate the descriptive learning ability of RWK+CN
with the improved random walk kernel RWK+ on unsupervised
pattern mining tasks; in the second part, we show the effectiveness
of RWK+ for a variety of KCN architectures and supervised graph
learning tasks, and demonstrate the expressiveness of RWK+Conv
layer, especially on the graph-level tasks. RWK+ and RWK+Conv
adapt to various real-world applications, including web applications
such as bot detection in a web-scale Twitter social network, and
community classification in Reddit social interaction networks.
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1 INTRODUCTION

Graph kernels have historically been a popular approach to “flatten”
graphs explicitly or implicitly into vector form that many down-
stream algorithms can more easily handle. While graph kernels
exhibit mathematical expressions that lend themselves to theoreti-
cal analysis [16], their handcrafted features may not be expressive
enough to capture the complexities of various learning tasks on
graphs [43]. More recently, graph kernels are superseded by mod-
ern GNNs which leverage multi-layer architecture and nonlinear
transformations to learn task-adaptive graph representations [61].

Interestingly, GNNs bear a close connection to the Weisfeiler-
Leman (WL) graph kernels [48], as well as the related WL graph
isomorphism test [53]. In fact, most recent work on the expressive
power of GNNs heavily use the 𝑘-WL hierarchy [28, 47], and others
have derived inspiration from it to design novel GNN architectures
[5, 33, 36, 59]. The WL kernel, which is quite popular thanks to its
attractive linear-time complexity [19], derives its simplicity from
iterative neighborhood aggregation, akin to the convolution scheme
of message-passing GNNs [17]. This type of connection has been
recognized and leveraged in the recent few years to derive a series
of “GNNs meet graph kernels” style models that bridge these two
worlds [2, 6, 8, 11, 13, 27, 29, 31, 40] (see Sec. 2 for detailed related
work), named as Kernel Convolutional Networks (KCNs).

RWKs, based on the number of (node label sequences along)
walks that two graphs have in common, have been the starting
point in the history of graph kernels [16, 23]. Notably, a recent
study by [25] demonstrated that classical randomwalk kernels with
only minor modifications are as expressive as the Weisfeiler-Leman
kernels and even surpass their accuracy on real-world classification
tasks. Inspired by this connection, our work extends from the ran-
dom walk neural network (RWNN) of [40], where each input graph
is represented by its RWK similarity to a set of small graphlets
(called hidden graphs) that are learned end-to-end by optimizing a
classification objective.

In this paper, we deepen the synergy between GNNs and graph
kernels, and improve the RWK as utilized within GNNs in a num-
ber of fronts. First, toward capturing more representative patterns,
we introduce several improvements to the RWK in both effective-
ness and efficiency and propose an improved graph kernel RWK+.
Second, we propose a descriptive KCN RWK+CN by flipping the ob-
jective from a discriminative one to a descriptive one that helps us
capture relational patterns in the graph database. What is more, we
derive the mathematical connection of RWK+ to layer-wise neural
network operators for the first time, which inspires us to propose
a novel GNN layer RWK+Conv. Finally, we employ our RWK+ and
RWK+Conv on a suite of real-world tasks for graph data and achieve
significant gains. A summary of our contributions is as follows:
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• RWK
+
with efficient color-matching: We identify that the

RWK originally developed in RWNN only enforces the same label at
the start and the end of two walks while ignoring the intermediates.
We reformulate it to count a walk as shared only if all corresponding
node pairs exhibit the same node label (i.e. color) at all steps along
the walk. While more reflective of graph similarity, RWKwith color-
matching incurs a memory and computational overhead. Therefore,
we propose the improved graph kernel RWK+ through transforming
its formulation for efficient computation. In addition, we propose a
learnable solution StepNorm to address the nontrivial task of com-
bining similarity scores across steps with drastically different scales.
• RWK

+
CN learning descriptive hidden graphs: The origi-

nal RWNN is trained supervised for graph classification and thus
learns discriminative hidden graphs. We propose RWK+CN with
an unsupervised objective, that uses RWK+ as the core kernel and
maximizes the total RWK similarity between the input graphs and
hidden graphs. The learned hidden graphs are reflective of the
frequent walks (i.e. patterns) in the database. To further enhance
the descriptive ability, we use additional “structural colors” to help
better capture structural similarity between graphs, and enforce a
diversity regularization among the hidden graphs to capture non-
overlapping subgraphs. Finally, we demonstrate the descriptive
learning ability of RWK+CN with our carefully designed testbeds.
• RWK

+
Conv, a novel GNN layer: By unrolling RWK+, we

discover that the derivation can be re-written as a sequence (i.e. mul-
tiple layers) of graph convolutional operations, connecting with
regular GCN layers. By viewing hidden graphs as learnable pa-
rameters, we transform the RWK+ algorithm into a novel GNN
layer called RWK+Conv. The RWK+Conv layer uses additional
element-wise product operation that can potentially bring better
expressiveness than the GCN layer.
• Broad applications of RWK

+
and RWK

+
Conv: We employ

RWK+ as the core kernel inside different KCN architectures and
evaluate it on four graph-level tasks: one discriminative (graph
classification), and three descriptive (graph pattern mining, graph-
level anomaly detection, and substructure counting). It is shown to
be improved over the vanilla RWK especially on descriptive tasks.
Moreover, we compare our proposed RWK+Conv layer with the
GCN layer on node- and graph-level tasks. RWK+Conv outperforms
GCN in both tasks, notably by a large margin in graph-level tasks,
empirically demonstrating its better expressiveness. It is worth
noting that our experiments contain a broad-range of real-world
applications, including web applications such as bot detection in a
web-scale Twitter social network with a million nodes, and com-
munity classification in Reddit social interaction networks.

Reproducibility: Our code is available at https://github.com/
mengchillee/RWK_plus.

2 RELATEDWORK

Graph Kernels. The literature on graph kernels is extensive and
well established, thanks to the prevalence of learning problems on
graph-structured data and the empirical success of kernel-based
methods [26, 39]. A large variety of graph kernels have been de-
veloped motivated either by their theoretical properties, or spe-
cialization or relevance to certain application domains like biology
[22, 42] or chemistry [45]. Those include graph kernels based on

shortest paths [4], subtrees [30, 43], graphlets [42, 49], random
walks [16, 23], as well as variants such as random walk return
probabilities [58], to name a few. A long line of work focused on
designing computationally tractable kernels for large graphs with
discrete as well as continuous node attributes [9, 15, 35, 49], while
those such as the Weisfeiler-Leman (WL) kernel [48] and others
[19] gained popularity thanks to linear-time efficiency.

A key challenge with classical graph kernels is lack of learnabil-
ity; today’s graph neural networks (GNNs) are able to learn feature
representations that clearly supersede the fixed feature representa-
tions used by graph kernels. At the same time, several connections
can be drawn between graph kernels and GNNs, such as the sim-
ilarity between the neighborhood aggregation of the WL kernel
(a.k.a. color refinement) and the scheme of message-passing GNNs
[17]. We discuss below recent line of work that tap into the synergy
between graph kernels and GNNs to harvest the best of both worlds.

Synergizing Graph Kernels and GNNs.While many works
bridge graph kernels withGNNs, they have clear distinctions. Coined
as Convolutional Kernel Networks [32], and others in similar lines
[6, 31], introduce neural network architectures that learn graph rep-
resentations that lie in the reproducing kernel Hilbert space (RKHS)
of graph kernels. Others design new classes of graph kernels using
GNNs [11, 18]. In contrast, and closest to our work, coined very simi-
larly as Graph Kernel Convolution Networks (KCNs) [8] and various
others [13, 27, 40] integrate a graph kernel into GNN architectures.
In other words, they show how to realize a given graph kernel with
a GNN module, which in effect unlocks end-to-end learnability
for the graph kernel. We provide further background on KCNs in
Sec. 3.1. Finally, while different in focus, there is also noteworthy
work exploiting graph kernels for pre-training GNNs [37], or to
extract preliminary features that are passed onto CNNs [38].

3 KERNEL CONVOLUTION NETWORKS WITH

RANDOMWALK KERNEL AND BEYOND

Kernel Convolution Network (KCN) [8, 13, 40] that convolves the
input graph with learnable hidden graphs using a certain graph ker-
nel has gained increasing attention recently, as it offers learnability
to graph kernels. Given the simplicity of randomwalk kernel (RWK)
and its differentiability, it has been used as the default graph kernel
inmanyKCNs like RWNN [40] and KerGNN [13].We first introduce
notation and background of KCN, along with designing an unsu-
pervised loss for learning descriptive features (Sec. 3.1). Then we
revisit the RWK (Sec. 3.2), and discuss the issues of its current usage
in KCNs (Sec. 3.3). Next, we introduce color-matching based RWK,
along with its efficient computation that shares connection to GNNs
(Sec. 3.4). Finally, we discuss how to increase the descriptive ability
of the learned hidden graphs in the unsupervised setting (Sec. 3.5).

Notation: Let 𝐺=(𝑉 (𝐺), 𝐸 (𝐺), 𝑙𝐺 ) denote an undirected, node-
attributed graph with 𝑛 nodes in 𝑉 (𝐺), 𝑒 edges in 𝐸 (𝐺), and an
attribute or labeling function 𝑙𝐺 : 𝑉 (𝐺) → 𝐶 where 𝐶 can be R𝑑
for continuous attributes or {𝑐1, ..., 𝑐𝑑 } for distinct discrete labels.
Let𝐴𝐺 denote the adjacency matrix, and𝐴𝐺⊗𝐻 := 𝐴𝐺 ⊗𝐴𝐻 depict
the Kronecker product of the adjacency matrices for graphs 𝐺 and
𝐻 . Let 𝑋𝐺 := [x𝑣1 , . . . , x𝑣𝑛 ]𝑇 ∈ R𝑛×𝑑 be the node attributes in 𝐺 .
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3.1 Kernel Convolution Networks

Graph kernels are designed tomeasure similarity on a pair of graphs.
However, they produce fixed handcrafted features. [27] derived
the first neural network that outputs the RWK similarity scores
between input graph and hidden learnable path-like graphs. [40]
generalized [27] such that the hidden graphs can have any structure
without the path constraints. The designed model is claimed to be
interpretable as the learned hidden graphs “summarize” the input
graphs. Later, [8] and [13] extended RWNN [40] to a multi-layer
architecture, in which each layer compares subgraphs around each
node of the input with learnable hidden graphs. We refer to these
models as Kernel Convolution Networks (KCNs) as they generalize
the Convolutional Neural Network (CNN) from the image domain
to the graph domain, with the help of a graph kernel. Each layer of
the KCN has a number of learnable hidden graphs.

Formally, let 𝐺 be the input graph with node 𝑣 ∈ 𝑉 (𝐺); let
h𝑡 (𝑣) ∈ R𝑘𝑡 be the representation of node 𝑣 at the 𝑡-th layer where
𝑘𝑡 is the number of learnable kernels in KCN’s 𝑡-th layer for 𝑡 > 0,
and 𝑘0 be the dimension of original node attributes with h0 (𝑣) = x𝑣 .
Let𝑊 𝑡

1 , ...,𝑊
𝑡
𝑘𝑡

denote the series of learnable hidden graphs in the
𝑡-th layer, and Sub𝑡

𝐺
[𝑣] be the subgraph around node 𝑣 on 𝐺 with

attributes {h𝑡 (𝑢) |𝑢 ∈ Sub𝐺 [𝑣]}, we have:

h𝑡+1 (𝑣) = [K(Sub𝑡𝐺 [𝑣],𝑊
𝑡+1
1 ), . . . ,K(Sub𝑡𝐺 [𝑣],𝑊

𝑡+1
𝑘𝑡+1
)] , (1)

where K is the graph kernel used to compute graph similarity.
Multi-layer KCNs stack graph kernel computations with layers, and
output node representations at each layer which can be used for
any downstream task. They exhibit strong representation ability
however the output is not interpretable or descriptive. The single-
layer KCN, while less expressive, can output meaningful similarity
scores for descriptive unsupervised feature learning, which com-
putes graph-level representation directly by:

h(𝐺) = [K(𝐺,𝑊1), . . . ,K(𝐺,𝑊𝑘 )] . (2)

Learning Descriptive Features. KCNs were originally proposed
for supervised learning, as such, the learned hidden graphs are dis-
criminative for classification tasks. We claim that the KCN model
can be paired with an unsupervised loss and used to generate de-
scriptive hidden graphs instead, which is not achieved by exist-
ing GNNs. Given the output of a single-layer KCN model is the
similarity scores to each hidden graph, one can train the KCN by
maximizing the total similarity score. Specifically, the unsupervised
objective is given as:

max
𝑊1,...,𝑊𝑘

𝑘∑︁
𝑖=1
K(𝐺,𝑊𝑖 ) . (3)

With this new objective, the learnable hidden graphs are to reflect or
summarize the common patterns of the graph database. Put differ-
ently, similarities are maximized when the learned graphs capture
frequent structural patterns that the kernel is designed to capture.
3.2 Revisiting the RandomWalk Kernel (RWK)

RWK has been used in KCNs as the default kernel. It has been
originally proposed to compare two labeled graphs by counting
the number of common walks on both graphs [16, 23]. Formally,

consider a labeled (discrete attribute) graph 𝐺 such that 𝑙 (𝑣) repre-
sents the label of node 𝑣 ∈ 𝑉 (𝐺). Let R𝑡 (𝐺) be the set of all 𝑡-step
random walks on 𝐺 . For a random walk p = (𝑣1, 𝑣2, .., 𝑣𝑡 ) ∈ R𝑡 (𝐺),
let 𝑙 (p) = (𝑙 (𝑣1), ..., 𝑙 (𝑣𝑡 )) denote the labels along the walk. Then
the 𝑡-step RWK K𝑡

𝑟𝑤 (𝐺,𝐻 ) computes the similarity of 𝐺 and 𝐻 by
counting the common walks as follows:

K𝑡
𝑟𝑤 (𝐺,𝐻 ) =

𝑡∑︁
𝑖=1

𝜆𝑖

∑︁
p∈R𝑖 (𝐺 )

∑︁
q∈R𝑖 (𝐻 )

I
(
𝑙 (p), 𝑙 (q)

)
(4)

where I(𝑥,𝑦) is the Dirac kernel where I(𝑥,𝑦) = 1 if 𝑥 = 𝑦, and 0
otherwise; and 𝜆𝑖 ∈ R denotes the weight of the 𝑖-th step’s score.

Definition 1. (Direct graph product) Given two labeled graphs
𝐺,𝐻 with labeling function 𝑙 , their direct product is a new graph𝐺×𝐻
with adjacency matrix𝐴𝐺×𝐻 , vertices𝑉 (𝐺 ×𝐻 ) = {(𝑢, 𝑣) ∈ 𝑉 (𝐺) ×
𝑉 (𝐻 ) | 𝑙 (𝑢) = 𝑙 (𝑣)} and edges 𝐸 (𝐺 × 𝐻 ) = {

(
(𝑢1, 𝑣1), (𝑢2, 𝑣2)

)
∈

𝑉 2 (𝐺 × 𝐻 ) | (𝑢1, 𝑢2) ∈ 𝐸 (𝐺) and (𝑣1, 𝑣2) ∈ 𝐸 (𝐻 )}.

[16] have shown that for any length 𝑡 walk, there is a bijective
mapping between R𝑡 (𝐺 ×𝐻 ) and {(p, q) ∈ R𝑡 (𝐺) ×R𝑡 (𝐻 ) | 𝑙 (p) =
𝑙 (q)}. Therefore, Eqn. (4) can be rewritten as:

K𝑡
𝑟𝑤 (𝐺,𝐻 ) =

𝑡∑︁
𝑖=1

𝜆𝑖 (1𝑇𝐴𝑖
𝐺×𝐻 1) (5)

where 1 denotes the all-ones vector of length |𝑉 (𝐺 × 𝐻 ) |. Note
that 𝐴𝐺×𝐻 is not 𝐴𝐺⊗𝐻 , where the latter is the Kronecker product
of 𝐴𝐺 and 𝐴𝐻 without enforcing label-matching along the walk.
3.3 Issues of Adapting RWK to KCN

The original RWK is designed for labeled graphs and cannot handle
graphs with continuous node attributes KCNs are often used for. To
that end, [40] proposed an extension of the RWK in their RWNN. Let
𝑋𝐺 ∈ R |𝑉 (𝐺 ) |×𝑑 depict the 𝑑-dimensional continuous attributes for
all nodes, and 𝑋𝐻 ∈ R |𝑉 (𝐻 ) |×𝑑 and 𝐴𝐻 ∈ R |𝑉 (𝐻 ) |× |𝑉 (𝐻 ) | depict
the learnable node features and the learnable adjacency matrix
of the hidden graph 𝐻 , respectively. For two graphs 𝐺 and 𝐻 , let
𝑆 = 𝑋𝐻𝑋

𝑇
𝐺
∈ R |𝑉 (𝐻 ) |× |𝑉 (𝐺 ) | encode the dot product similarity

between the attributes of the vertices from two graphs, where
s := vec(𝑆) is the 1-d vectorized representation of 𝑆 . The authors
of RWNN proposed to compute the revised RWK as:

K𝑡
𝑟𝑤− (𝐺,𝐻 ) = 1𝑇 (ss𝑇 ⊙ 𝐴𝑡

𝐺⊗𝐻 )1 , (6)

where ⊙ denotes the element-wise product. The revised kernel
computeswalkswith length exactly 𝑡 only.Mathematically, the term
ss𝑇 applies reweighting to 𝐴𝑡

𝐺⊗𝐻 such that the (𝑖, 𝑗)-th element
becomes s𝑖s𝑗 (𝐴𝑡

𝐺⊗𝐻 )𝑖 𝑗 where (𝐴
𝑡
𝐺⊗𝐻 )𝑖 𝑗 is equal to the number

of length-𝑡 walks from pair of nodes 𝑖 to pair of nodes 𝑗 in the
Kronecker product graph 𝐺 ⊗ 𝐻 .

Although the proposed adaptation of RWK can handle continu-
ous node attributes, we identify two critical issues with Eqn. (6) that
we outline below and later address in Sec.s 3.4 and 3.5, respectively.

Issue 1: Colormismatch. Let p = (𝑢1, ..., 𝑢𝑡 ) be awalk on𝐺 and
q = (𝑣1, ..., 𝑣𝑡 ) be a walk on 𝐻 . Eqn. (6) only considers reweighting
the number of walks from (𝑢1, 𝑣1) to (𝑢𝑡 , 𝑣𝑡 ), where (𝑢1, 𝑣1) is the
starting pair and (𝑢𝑡 , 𝑣𝑡 ) the ending pair, without comparing the
intermediary nodes along the walk. In essence, their formulation
of the RWK is limited to only partially shared walks.
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Issue 2: Inefficient parameterization.Notice that s = vec(𝑆) =
vec(𝑋𝐻𝑋

𝑇
𝐺
) = ∑𝑑

𝑖=1 (𝑋
[𝑖 ]
𝐺
⊗ 𝑋 [𝑖 ]

𝐻
), where 𝑋 [𝑖 ]

𝐺
denotes the 𝑖-th col-

umn of 𝑋𝐺 . Using this equality, we can rewrite Eqn. (6) as:

K𝑡
𝑟𝑤− (𝐺,𝐻 ) = 1𝑇 (ss𝑇 ⊙ 𝐴𝑡

𝐺⊗𝐻 )1 = s𝑇𝐴𝑡
𝐺⊗𝐻 s

= (
𝑑∑︁
𝑖=1
(𝑋 [𝑖 ]

𝐺
⊗ 𝑋 [𝑖 ]

𝐻
) )𝑇 (𝐴𝑡

𝐺 ⊗ 𝐴
𝑡
𝐻 ) (

𝑑∑︁
𝑖=1
(𝑋 [𝑖 ]

𝐺
⊗ 𝑋 [𝑖 ]

𝐻
) )

=

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
(𝑋 [𝑖 ]𝑇

𝐺
𝐴𝑡
𝐺𝑋

[ 𝑗 ]
𝐺
) ⊗ (𝑋 [𝑖 ]𝑇

𝐻
𝐴𝑡
𝐻𝑋

[ 𝑗 ]
𝐻
)

= 1𝑇 (𝑋𝑇
𝐺𝐴𝑡

𝐺𝑋𝐺 ) ⊙ (𝑋𝑇
𝐻𝐴𝑡

𝐻𝑋𝐻 )1 (7)

If 𝐻 is a learnable hidden graph with parameters 𝐴𝐻 ∈ R𝑚×𝑚
and 𝑋𝐻 ∈ R𝑚×𝑑 , the effective parameters are merely 𝑋𝑇

𝐻
𝐴𝑡
𝐻
𝑋𝐻 ∈

R𝑑×𝑑 . That is, dimension 𝑑 is an important degree of freedom for
learnability, which can be small for certain real-world graphs.
3.4 Color-Matching RandomWalks with

Efficient Computation

To address Issue 1, we propose an improved random walk kernel
RWK+ by deriving an effective formulation. First, notice that the
original RWK for labeled graphs can be rewritten using the Kro-
necker product 𝐴𝐺⊗𝐻 and one-hot encoded representation of the
node labels. We slightly change the 𝐺 × 𝐻 notation by introducing
a set of “empty” nodes

{
(𝑢, 𝑣) ∈ 𝑉 (𝐺) ×𝑉 (𝐻 ) |𝑙 (𝑢) ≠ 𝑙 (𝑣)

}
to the

direct product graph 𝐺 × 𝐻 . “Empty” nodes do not connect to any
node hence this does not change the graph, rather they enlarge the
size of𝐴𝐺×𝐻 to be the same as𝐴𝐺⊗𝐻 . Given𝑋𝐺 and𝑋𝐻 as one-hot
encoding of labels, the similarity matrix 𝑆 = 𝑋𝐻𝑋

𝑇
𝐺
is a binary val-

ued matrix. Then, the following relation can be easily established:

𝐴𝐺×𝐻 = diag(s)𝐴𝐺⊗𝐻diag(s) = ss𝑇 ⊙ 𝐴𝐺⊗𝐻 , (8)

where diag(s) denotes a diagonal matrix with s being the diagonal.
Thanks to Eqn. (8), we can rewrite the original RWK in Eqn. (5) as:

K𝑡
𝑟𝑤+ (𝐺,𝐻 ) =

𝑡∑︁
𝑖=1

𝜆𝑖 [1𝑇 (ss𝑇 ⊙ 𝐴𝐺⊗𝐻 )𝑖1] , (9)

which is slightly different from Eqn. (6) with ss𝑇 moving inside
the power iteration. Although the derivation starts from labeled
graphs, Eqn. (9) can be directly used for continuous attributed
graphs without modification. Notice that this new formulation now
takes all intermediary node attributes into consideration when
comparing walks as intended.
3.4.1 Reformulation toward Efficient ComputationThe formula-

tion in Eqn. (9) needs to compute the product graph between 𝐺

and 𝐻 which is inefficient in both memory and time. We estab-
lish an efficient computation by a property of Kronecker product,
(𝐴 ⊗ 𝐵)vec(𝑆) = vec(𝐵𝑆𝐴𝑇 ) [51] , and rewrite the main part of
Eqn. (9) step by step as follows:

1𝑇 (ss𝑇 ⊙ 𝐴𝐺⊗𝐻 )𝑖1

= 1𝑇 (diag(s)𝐴𝐺⊗𝐻diag(s))𝑖1

= 1𝑇 diag(s−1) (diag(s2)𝐴𝐺⊗𝐻 )𝑖vec(𝑆)

= 1𝑇 diag(s−1) (diag(s2)𝐴𝐺⊗𝐻 )𝑖−1diag(s2)vec(𝐴𝐻𝑆𝐴
𝑇
𝐺 )

= 1𝑇 diag(s−1) (diag(s2)𝐴𝐺⊗𝐻 )𝑖−1vec(𝑆 ⊙ 𝑆⊙(𝐴𝐻𝑆𝐴
𝑇
𝐺 )) (10)

The LHS thus can be computed iteratively by applying colored
operations on the RHS repeatedly, using the procedure outlined in
Algo. 1 (where transpose is applied to all variables).

Algorithm 1 Fast Color-Matching RWK {and RWK+Conv}

1: Input:𝐺=(𝐴𝐺 ∈ R𝑛×𝑛 , 𝑋𝐺 ∈ R𝑛×𝑑 ); 𝐻 =(𝐴𝐻 ∈ R𝑚×𝑚 , 𝑋𝐻 ∈
R𝑚×𝑑 ); max step 𝑡 ; { H are parameters in RWK+Conv}

2: Init: 𝑌0← 𝑋𝐺𝑋
𝑇
𝐻
, 𝑌 ← 𝑌0; {𝑌0← 𝜎 (𝑋𝐺𝑋𝑇

𝐻
) in RWK+Conv}

3: for 𝑖 = 1 to 𝑡 do

4: 𝑌 ← 𝐴𝐺𝑌𝐴
𝑇
𝐻

5: 𝑌 (𝑖 ) ← 𝑌0 ⊙ 𝑌
6: 𝑌 ← 𝑌0 ⊙ 𝑌 (𝑖 )
7: end for

8: Return:
∑
𝑖, 𝑗 𝑌

(𝑡 )
𝑖, 𝑗

or
∑
𝑖, 𝑗 (

∑
𝑙 𝜆𝑙 · 𝑌 (𝑙 ) )𝑖, 𝑗

Complexity Analysis. Let 𝐺 be the sparse input graph with
𝑛 nodes and 𝑒 edges, and let 𝐻 be the dense hidden graph with𝑚
nodes. Eqn. (9) requires the explicit computation of Kronecker prod-
uct, requiring runtime complexity𝑂 (𝑒𝑚2) and memory complexity
𝑂 (𝑒𝑚2). In contrast, Eqn. (10) has runtime complexity𝑂 (𝑒𝑚+𝑛𝑚2)
and memory complexity 𝑂 (𝑛𝑚 +𝑚2 + 𝑒).
3.4.2 Learnable Similarity Normalization In Eqn. (9) we compute

the random walk similarity score for each step 𝑖 iteratively. As each
step counts the number of shared walks with length 𝑖 , the scale of
the similarity score across different steps can be considerably dif-
ferent, underscoring shorter walks. To combine these scores across
different steps, we need to normalize the scores, which is nontrivial.
To avoid hand-crafted normalization that needs hyperparameter
tuning for different input, we introduce StepNorm that normalizes
the score in a learnable way. StepNorm combines BatchNorm [21]
with the sigmoid function, where BatchNorm first standardizes the
score to a Normal distribution and then shifts and rescales the score
with learnable parameters. Sigmoid further normalizes the score to
the range [0, 1]. We place StepNorm between lines 4 and 5 in Algo. 1
to normalize the score step by step, and set 𝜆𝑙 = 1 for all 𝑙 ∈ [1, 𝑡].
3.5 Enhancing Descriptive Hidden Graphs

Thanks to the unsupervised objective in Eqn. 3 and our RWK+,
KCNs can be used to learn descriptive features. To further enhance
the descriptive ability of the hidden graphs learned by KCN, we
propose RWK+CN, with two more important solutions:
S1: Additional “Structural Colors”. As discussed under Issue
2 in Sec. 3.3, the input feature dimension 𝑑 (i.e. number of node
attributes) is an important degree of freedom for learnability for
the original RWK in [40]. For RWK with color-matching, input
features also play an important role as the similarity matrix 𝑆 =

𝑋𝐻𝑋
𝑇
𝐺
would be sparser with features that better characterize the

nodes. Features that characterize structurally similar nodes also
enable stronger feature matching at each step of a pair of walks
between two graphs. Therefore, we propose to enrich the original
node features with additional structural features in unsupervised
learning of descriptive hidden graphs. As randomly initialized GNN
can produce reasonable features for evaluating similarity in graph
generation [50], we generate additional structural features through
a fixed randomly initialized GNN to augment the original features.
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S2: Diversity Regularization. When learning with more than
one hidden graph without any constraint, the optimization may
end up learning either the most frequent or otherwise very similar
patterns. Therefore, we introduce diversity regularization R toward
learning non-overlapping hidden graphs, defined as follows:

R(𝑊1, . . . ,𝑊𝑘 ) =
2

𝑘 (𝑘 − 1)

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

K𝑡
𝑟𝑤 (𝑊𝑖 ,𝑊𝑗 ) (11)

The overall unsupervised objective becomes maximizing the input
graph to hidden graph similarities, while also minimizing the pair-
wise RWK similarities among the hidden graphs R(𝑊1, . . . ,𝑊𝑘 ).
3.6 Connections with GNNs

Moreover, RWK+ shares connections with Graph Convolutional
Networks (GCN) [24]. If we view the hidden graph inside RWK+
as learnable parameters, line 4 of Algo. 1 is given as 𝑌 ← 𝐴𝐺𝑌𝐴

𝑇
𝑊
,

which shares the same formulation as the graph convolutional oper-
ation in GCN, ignoring the activation function. Besides convolution-
like computation, RWK+ with learnable hidden graph also has a
gated element-wise product as in line 5 of Algo. 1.

To demonstrate the connections with GNNs, we propose a novel
GNN layer RWK+Conv, based on Algo. 1 (see the gray part). The
major differences between RWK+Conv and a normal GCNConv
are: (1) element-wise product operation with 𝑌0 motivated from
node color matching; and (2) multi-step within a single convolution
layer that shares the same parameter 𝐴𝐻 and 𝑋𝐻 . Additionally, we
make following changes to turn it into a neural network layer: (1)
adding a sigmoid to 𝑌0 to normalize the scale of similarity between
0 and 1; and (2) parameterizing 𝐴𝐻 with a fully-connected layer.
With the learnable hidden graphs and the additional element-wise
product operation, we expect RWK+Conv to bring better expres-
siveness than the GCN layer. We empirically demonstrate this point
in Sec 5.2, across many applications.

4 EXPERIMENTS I: UNSUPERVISED PATTERN

MINING

Through a series of experiments, we show that RWK+CN can be
used for several unsupervised pattern mining tasks, and that each
of our proposed solutions contribute to improved performance and
descriptive ability. Pattern mining, which is typically a graph algo-
rithm subject matter, is a very difficult task to achieve via machine
learning. Since our major purpose is to demonstrate the advan-
tages of RWK+CN over RWNN, they are evaluated on a controlled
testbed with ground truth, wherein we understand the nature of
the graphs. The detailed descriptions are given in Appx. A.
4.1 Task 1: Simple Subgraph Matching

We design two tasks where the subgraphs are easy to learn. The
first task aims to show that RWK+CN handles color-matching of
every node pair along walks, while RWNN does not. The second
task demonstrates that diversity regularization aids with learning
non-overlapping hidden graphs. We report the matching accuracy
for each experiment, where it is considered as a correct match when
the model learns the desired subgraph pattern(s).

Task 1-1.We generate a database of 100 bipartite graphs with
heterophily, where nodes on two sides of the graph have different
colors/labels (e.g. Fig. 4a). We use one hidden graph, and the task is

Table 1: Task 1-1: Simple subgraph matching in bipartite

graphs. Thanks to color-matching, RWK
+
CN performs well

even when the objective is based only on the last step.

Method Objective # of Steps Acc.

RWNN Sum of All Steps 2 26%
3 100%

RWNN Only Last Step 2 0%
3 100%

RWK+CN Only Last Step 2 100%
3 100%

Table 2: Task 1-2: Simple subgraph matching in triangle

chains. Diversity regularization helps RWK
+
CN learn

non-overlapping hidden graphs.

# of Hidden Graphs Method Diversity P1 Acc. P2 Acc. Both Acc.

2
RWNN No 0% 0% 0%

RWK+CN No 82% 24% 12%
Yes 72% 66% 44%

3
RWNN No 0% 0% 0%

RWK+CN No 88% 44% 32%
Yes 76% 80% 62%

4
RWNN No 0% 0% 0%

RWK+CN No 98% 68% 66%
Yes 84% 86% 74%

to learn a bipartite core; “butterfly” (Fig. 4b), or a 3-star with core and
peripherals with different colors (Fig. 4c). Two different objectives
are used; one is to maximize the total similarities from all steps,
and another is to maximize the similarity only from the last step.

Table 1 reports the matching accuracies. Our RWK+CN works
well even if the similarity is only from the last step, regardless of
the number of steps. Since RWK+CN matches the labels of every
node pair in each walk, maximizing the similarity from the last step
needs to ensure the correctness of matching from previous steps at
the same time. Although RWNN works when the similarity is from
all steps, it fails when the similarity is from the last step when the
number of steps equals 2. This is because the even-step neighbors
in a bipartite heterophily graph have the same color.

However, this task is a special case, where the method only
needs to realize that the neighbors should have the other color in the
learned pattern. That is to say, RWNN still can not solve complicated
cases just by summing up the similarity from all steps. As we will
see later in this section, while RWNN always learns rudimentary
patterns because of ignoring the intermediate nodes in the walks,
RWK+CN learns more sophisticated ones by taking it into account.

In the rest of this section, for fair comparison, we use “Sum of
All Steps” as the objective for RWNN, and “Only Last Step” for
RWK+CN, which performs well and simplifies the optimization.

Task 1-2. To test diversity regularization, we generate a database
with 100 node-labeled triangle chains, containing two frequent
patterns (e.g. Fig. 5a). Each triangle is either pattern P1 (Fig. 5b)
with probability 60% or otherwise P2 (Fig. 5c) with lower frequency.
The number of steps is set to 3, which is efficient and sufficient to
capture both homophily (1-step) and heterophily (2-step) neighbors.

Table 2 reports the results, where accuracy depicts if both P1 and
P2 are learned by the hidden graphs. Even without diversity regu-
larization, RWK+CN learns the most frequent pattern P1 with high
accuracy. When diversity regularization is applied, accuracies for
the second frequent pattern P2 and both patterns increase. The in-
crease is larger when RWK+CN is trainedmore flexibly with a larger
number of hidden graphs to be learned. Notably, RWNNwith vanilla
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Method # of Steps
GED w/ Node

Labels
𝑝-value

RWNN 2 3.35 ± 0.41 3.1𝑒-05∗∗∗
RWNN 4 3.15 ± 0.34 3.2𝑒-03∗∗
RWNN 6 3.25 ± 0.39 4.7𝑒-04∗∗∗

RWK+CN 2 2.87 ± 0.58 0.20
RWK+CN 4 2.82 ± 0.64 0.33
RWK+CN 6 2.76 ± 0.86 -

(d) Table of results. Lower GED is better.

Figure 1: Task 2-1: GED-based evaluation on tail-triangles.
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(c) Hidden Graph

by RWNN

Method # of Steps
GED w/ Node

Labels
𝑝-value

RWNN 2 7.08 ± 0.64 8.4𝑒-14∗∗∗
RWNN 4 7.16 ± 0.58 2.7𝑒-14∗∗∗
RWNN 6 6.92 ± 0.75 2.1𝑒-11∗∗∗

RWK+CN 2 5.58 ± 0.65 0.21
RWK+CN 4 5.59 ± 0.73 0.21
RWK+CN 6 5.46 ± 0.86 -

(d) Table of results. Lower GED is better.

Figure 2: Task 2-1: GED-based evaluation on rings.

RWK fails to learn either of the patterns. As it prefers the more
frequent colors, it often learns all the node colors to be the same.
4.2 Task 2: GED-Based Evaluation

To further show the advantages of RWK+CN, we design two more
tasks each with two different testbeds. For evaluation, these exper-
iments consider a database containing 100 identical graphs, which
is used as the ground truth, i.e. only one hidden graph is used in
both tasks. As the ground truth is more complex than the ones in
Task 1, and it is difficult to learn the exact graph, we use graph
edit distance (GED) [46] to measure how close the learned hidden
graph is to the ground truth (the lower the better). While GED with
node labels induces a penalty for editing the labels, GED without
node labels purely focuses on the graph structure. The first task
studies labeled graphs with different number of steps, and shows
that RWK+CN outperforms RWNN thanks to color-matching. The
second task demonstrates the effectiveness of adding “structural
colors”, which improves both the learned structure and labels. We
report 𝑝-values based on the paired 𝑡-test that quantify differences
between two GED values statistically.

Task 2-1.We design two testbeds using node-labeled tailed trian-
gles and rings, as shown in Fig. 1a and 2a, respectively (best in color).

Table 3: Task 2-2: GED-based evaluation on 3-regular unla-
beled graph. Being used as unique identifiers of nodes, struc-

tural colors are shown to be as effective as identity matrix.

Method
Additional

Features

GED w/o Node

Labels
𝑝-value

RWNN None 4.38 ± 0.65 -
RWNN Identity 4.41 ± 0.56 0.57

RWK+CN Identity 3.89 ± 0.48 4.4𝑒-05∗∗∗
RWNN SC 4.45 ± 0.70 0.72

RWK+CN SC 4.10 ± 0.50 0.010∗

Table 4: Task 2-2: GED-based evaluation on 2-regular labeled
graph. Both color-matching and structural colors improve

the quality of structure and label learned by hidden graph.

Method
Additional

Features

GED w/o Node

Labels

𝑝-value w/

Row 1

𝑝-value w/

Row 2

RWNN None 5.25 ± 0.64 - -
RWK+CN None 5.02 ± 0.63 0.049∗ -
RWK+CN Identity 4.81 ± 0.70 1.0𝑒-03∗∗ 0.043∗
RWK+CN SC 4.82 ± 0.70 1.1𝑒-03∗∗ 0.043∗

Method
Additional

Features

GED w/ Node

Labels

𝑝-value w/

Row 1

𝑝-value w/

Row 2

RWNN None 7.25 ± 0.64 - -
RWK+CN None 6.60 ± 0.93 1.8𝑒-04∗∗∗ -
RWK+CN Identity 6.12 ± 1.01 2.9𝑒-08∗∗∗ 1.8𝑒-03∗∗
RWK+CN SC 6.25 ± 1.01 7.2𝑒-07∗∗∗ 0.015∗

We learn the hidden graph with the same number of nodes as the
ground truth graph. Tables 1d and 2d report the GED comparison.

RWK+CN achieves consistently lower GED than RWNN, demon-
strating the importance of incorporating color-matching into the
RWK. Experiments on both testbeds show that there is no clear
choice for the number of steps, i.e., higher is not always better,
where the p-values are high within RWK+CN. We visualize the
learned hidden graphs by removing the edges with the smallest
edge weights. Fig. 1b shows that RWK+CN successfully assigns the
green node with degree 3 in the correct position. Since the blue
node only has degree 1, RWK+CN reasonably learns to maximize
the objective by adding one more red node in the hidden graph,
which is the most frequent color; in Fig. 1c, RWNN fails to handle
the intermediate nodes, and hence includes only the most frequent
color in the learned hidden graph. We observe a similar behavior
in Fig. 2b and 2c. While RWK+CN pays much attention to learning
the correct node labels, RWNN gives a rudimentary result, where
all the nodes have the same labels.

Task 2-2. Two more testbeds are designed to evaluate struc-
tural colors. The number of steps is set to 3, which is effective and
efficient. The first database contains 3-regular unlabeled graphs
(Fig. 6a). We evaluate RWK+CN and RWNN by GED without node
labels, focusing on the quality of the learned structure. Our assump-
tion is, if the structural identifiers (node labels) are more unique,
then the hidden graph can learn better graph structure. Therefore,
we assume identity matrix as the best features in the evaluation,
though it is not generalizable to the real datasets. We create the
structural colors by a fixed and randomized Graph Attention Net-
works (GAT) [52]. The results are reported in Table 3. Our proposed
RWK+CN using identity matrix as features receives the lowest GED
without node labels, as expected. RWK+CN using structural colors
has competitive GED compared with using identity matrix, while
being more generalizable. These results also empirically prove our
assumption that using more unique identifiers as node features
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Table 5: Graph anomaly detection on 10 real-world datasets. Recall is reported. iGAD using our proposed RWK
+
as structural

feature extractor outperforms original iGAD on all datasets.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC-257

iGAD + RWK 75.1±1.1 74.1±0.8 77.9±1.2 78.6±0.9 78.7±1.3 78.8±0.3 83.1±1.7 78.3±1.1 79.4±0.6 78.0±1.0
iGAD + RWK+ 76.4±0.6 74.3±1.0 78.8±1.1 79.2±0.5 79.5±2.2 79.2±0.9 84.0±1.4 78.5±0.9 79.5±1.6 79.5±0.7

Table 6: Graph classification on 10 real-world datasets. Accuracy is reported. Although RWK
+
is built to capture descriptive

features, it is competitive on most datasets.

Dataset MUTAG D&D NCI1 PROTEINS MUTAGEN TOX21 ENZYMES IMBD-B IMDB-M REDDIT

KerGNN + RWK 81.9±5.3 75.2±1.5 71.6±2.6 75.3±1.2 74.4±2.4 89.1±0.3 47.3±3.9 71.2±2.1 48.1±2.9 77.2±0.5
KerGNN + RWK+ 83.0±6.4 74.8±2.4 72.3±1.3 76.2±1.2 75.1±1.0 89.2±0.3 44.0±2.7 71.6±1.0 49.2±0.6 77.5±0.6

helps the hidden graph to learn better structure. In contrast, RWNN
fails to utilize the features even if they are extremely informative.

In the second testbed, we study a database containing 2-regular
node-labeled graphs (i.e. 6-ring, Fig. 6b), and report the results in
Table 4. Only by replacing RWNN with our proposed RWK+CN,
the quality of learned hidden graph improves not only on labels,
but also on the structure. In addition to the node labels, we further
incorporate structural colors into RWK+CN, and find the learned
hidden graph improves even better, demonstrating the effective-
ness of structural colors. Notably, using identity matrix as features
results in only slightly lower GED than using structural colors.

5 EXPERIMENTS II: ADAPTING TO VARIOUS

APPLICATIONS

In this section, the experiments is composed of two parts. In the
first part, we demonstrate that different KCN architectures can
perform better by employing our proposed RWK+. In the second
part, we compare our proposed RWK+Conv with GCNConv, and
empirically show that it has better expressiveness. The details of
dataset statistics and hyperparameter search are in Appx. B.
5.1 RWK

+
: Employed to Different Architectures

We conduct three graph learning tasks for evaluating RWK+. Since
we focus on improving RWK across many tasks, rather than out-
performing task-specific state-of-the-art methods, the experiments
concentrate on comparing models using RWK versus RWK+.
5.1.1 iGAD on Graph Anomaly Detection

Datasets. We evaluate RWK+ on supervised graph anomaly de-
tection with 10 real-world datasets from PubChem [55], as in [57].
Each graph is a chemical compound and labeled by its outcome
from anti-cancer screen tests (active or inactive). The classes are
highly imbalanced, where the ratio of the active samples is at most
12%, which are treated as the anomalous cases. We perform 5-fold
cross-validation and split 10% of training set as the validation set.
Settings. iGAD [57] incorporates RWK as a structural feature ex-
tractor to identify graph-level anomalies. For comparison we re-
place it with RWK+ using StepNorm, with one-hot node degrees
as the node features. Recall is used for both evaluation and model
selection, as in the iGAD paper.
Results.We report the average performance and standard deviation
(stdev) in Table 5. iGAD with our proposed RWK+ outperforms the
original model on all datasets (𝑝-val <0.001). This suggests that the
hidden graphs learned through RWK+ are consistently better than

Table 7: Substructure counting on a simulated dataset. MAE

is reported. RWK
+
wins in 3 out of 4 tasks, and StepNorm is

shown to be effective.

Task Triangle Tailed Tri. Star 4-Cycle

KerGNN + RWK 0.1170 0.1346 0.1333 0.2153
KerGNN + RWK + StepNorm 0.1065 0.1251 0.0999 0.2140
KerGNN + RWK+ 0.1206 0.1246 0.1750 0.2078
KerGNN + RWK+ + StepNorm 0.0802 0.1240 0.1312 0.1884

the ones extracted by RWK, assisting iGAD in better pointing out
the anomalous graphs that deviate from these patterns.
5.1.2 KerGNN on Substructure Counting

Datasets. We evaluate RWK+ on substructure counting with a
simulated dataset from [7], following the same setting in [60], and
the task is to predict the normalized count of substructures. This
dataset includes four tasks, and the evaluation for different tasks are
run separately. The dataset provides the training, validation, and
testing sets with 1, 500/1, 000/2, 500 graphs, respectively. One-hot
node degrees are used as the node features.
Settings. KerGNN [13] uses RWK to compare the similarity be-
tween the learnable hidden graphs and the egonets of nodes in a
graph. The similarity from different learnable hidden graphs are
used as the features for message passing. In this experiment, we re-
place RWK inside KerGNN with RWK+. Mean absolute error (MAE)
is used to measure the accuracy of counts.
Results. As shown in Table 7, KerGNN with RWK+ outperforms
KerGNN with RWK in 3 out of 4 tasks. StepNorm is shown to ef-
fectively improve the performance of both methods by normalizing
the similarity in each step. Without it, the similarity explodes after
a number of steps, and is always dominated by the latest step. Al-
though RWK performs better in counting stars, there are few paths
to walk within a star, which decreases the necessity of adopting a
kernel that is more accurate on similarity.
5.1.3 KerGNN on Graph Classification

Datasets. We evaluate RWK+ on graph classification with 10 real-
world datasets from TUDataset [34], as in [13]. We use the node la-
bels given by bio-informatics datasets (first 7), and the one-hot node
degrees for the social interaction datasets (last 3). We perform 5-fold
cross-validation and split 10% of training set as the validation set.
Settings. Similar to substructure counting, KerGNN is used with
RWK versus RWK+. For fair comparison, StepNorm is employed
for both models. We report average accuracy and stdev.
Results. Table 6 shows that although RWK+ is designed with de-
scriptive, structural graph features in mind, it offers competitive
performance on most classification tasks (𝑝-val <0.1).

463



WWW ’24, May 13–17, 2024, Singapore, Singapore Meng-Chieh Lee, Lingxiao Zhao, and Leman Akoglu

23 24 25 26

# of Hidden Graphs

21

23

25

27

Ru
nt

im
e 

(s
) /

 E
po

ch

RWK + -Eff.
RWK + -Reg.
RWK

2 3 4 5
# of Steps

100

101

102

Ru
nt

im
e 

(s
) /

 E
po

ch

RWK + -Eff.
RWK + -Reg.
RWK

Figure 3: Runtime of KerGNN+RWK
+
computed by regular

Eqn. (9) vs. efficient Eqn. (10), also compared to vanilla RWK.

Table 8: Node classification on 6 real-world datasets.

RWK
+
Conv wins in most tasks on accuracy.

Dataset Cora CiteSeer PubMed Cham. Squirrel Actor

GCNConv 85.8±0.7 73.4±0.5 88.0±0.2 69.7±0.9 55.7±0.4 28.3±0.6
RWK+Conv 88.3±0.5 76.7±0.2 88.1±0.2 69.3±1.9 49.7±1.3 36.0±0.2

Scalability. Finally, we verify RWK+’s scalability empirically, vary-
ing (1) the number of hidden graphs and (2) the number of steps on
the NCI1 dataset, and report the runtime per epoch during training.
In (1), the number of step is set to be 2, and in (2), the number of hid-
den graphs is set to be 8. As shown in Fig. 3, KerGNN with RWK+ is
slightly slower than with RWK, although the overhead is negligible
(< 1 sec.), and scales linearly, with significant performance gains
over regular color-matching computation.
5.2 RWK

+
Conv: Connections with GNNs

To show that RWK+Conv is more expressive than GCNConv, a GCN
message-passing layer [24], we compare them across both node- and
graph-level tasks. In all experiments, we rigorously ensure that both
kinds of layers share exactly the same message-passing backbone.
5.2.1 Node Classification

Datasets.We evaluate RWK+Conv on node classification with 6
datasets, including homophily graphs (first 3) [56] and heterophily
graphs (last 3) [41, 44]. Each dataset is split into 60%/20%/20% for
training, validation, and testing, respectively.
Results. In Table 8, although expressiveness does not necessarily
play a key role in achieving better accuracy on node-level tasks,
RWK+Conv still has competitive or better performance than GC-
NConv in most datasets. We also report the run time per epoch
on the largest dataset PubMed in Table 9, where RWK+Conv only
creates negligible computational overhead (less than 0.05 second).
5.2.2 Twitter Bot Detection

Datasets.We evaluate RWK+Conv on a web application, namely
bot detection in the TwiBot-22 dataset [14]. This dataset contains
a web-scale Twitter social network with one million users, where
86% of them are human, and the rest 14% are bots. We keep only the
edges with types “followed” and “following”, andmake it undirected.
The node features are embeddings of user descriptions, transformed
by BERT [10]. The dataset provides the training, validation, and
testing sets with 70%/20%/10% nodes, respectively.
Results. In Table 10, we find that RWK+Conv outperforms GCN-
Conv on F1-score. This suggests that RWK+Conv has better ability
to detect the bots by better utilizing the graph structure.

Table 9: Runtime of RWK
+
Conv, with negligible overhead.

Step Length 2 3 4 5

GCNConv 0.0269 - - -
RWK+Conv 0.0371 0.0464 0.0522 0.0619

Table 10: Twitter bot detection on a real-world web-scale

dataset. RWK
+
Conv wins on F1-score.

Dataset TwiBot-22

GCNConv 53.7±0.2
RWK+Conv 55.0±0.2

Table 11: Graph regression and classification on 3 real-world

datasets. RWK
+
Conv wins in all tasks.

Dataset ZINC ogbg-molhiv ogbg-molpcba

Metric MAE ↓ ROC-AUC ↑ AP ↑
GCNConv 0.3258±0.0067 76.06±0.97 20.20±0.24
GINConv 0.2429±0.0033 77.78±1.30 22.66±0.28
RWK+Conv 0.2082±0.0025 78.61±0.61 24.90±0.12

5.2.3 Graph Regression and Classification
Datasets. We evaluate RWK+Conv on graph regression and classi-
fication with three real-world datasets, ZINC [12], ogbg-molhiv and
ogbg-molpcba [20]. Note that RWK+CN does not use edge features.
Results.We include an additional baseline GINConv from GIN [54].
In Table 11, we find that RWK+Conv outperforms both baselines
significantly across all datasets and tasks. This empirically demon-
strates the better expressiveness of RWK+Conv than GCNConv.
5.2.4 Summary and Future Work

All results strongly suggest the better expressiveness of our pro-
posed RWK+Conv, especially on graph-level tasks, and its connec-
tion to GCN motivates novel convolutional layers for better model
design. This offers a direction with large potential to investigate
further in the future. We also want to point out that the current
design of the RWK+Conv does not take edge features into consider-
ation. Extending it to handle edge features by matching edge colors
at every step of random walk could be a potential future work.

6 CONCLUSION

In this paper, we first presented RWK+, an improved random walk
kernel with end-to-end learnable hidden graphs that can be used
by various KCNs. RWK+ incorporates color-matching along the
walks that we showed can be efficiently computed in iterations, and
combines similarities across steps in a learnable fashion. We then
proposed RWK+CN, a KCN that learns descriptive hidden graphs
with an unsupervised objective and RWK+. Thanks to additional
“structural colors” and diversity regularization, it learns hidden
graphs that better reflect the frequent and distinct graph patterns.
Moreover, based on the mathematical connection of RWK+ with
GNNs, we propose a novel GNN layer RWK+Conv, that extracts
expressive graph representations. Experiments showed RWK+’s
descriptive learning ability on various unsupervised graph pattern
mining tasks, as well as its advantages when employed within var-
ious KCN architectures on several supervised graph learning tasks.
Furthermore, we showed that our proposed RWK+Conv layer out-
performs GCN, especially in the graph-level tasks by a large margin.
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A UNSUPERVISED PATTERN MINING

As the optimization is prone to local minima, we randomly initialize
the parameters several times and report the average result. The
random initialization is done on the parameters of hidden graph(s)
and its/their node features. The parameters of hidden graphs are
uniformly initialized between −1 to 1. The parameters of the node
features of the hidden graphs are uniformly initialized between 0
to 1. Moreover, we have two differences from RWNN. First, RWNN
uses the ReLU function right after constructing the hidden graphs,
which makes the gradients of edges, whose weights are initialized
with negative values, become zero. We thus replace the ReLU func-
tion with Sigmoid function to properly learn the hidden graphs.
Second, in order to prevent the model stuck at local minimums, we
use SGD with a large momentum as the optimizer.
A.1 Task 1: Simple Subgraph Matching

Fig. 4 shows an example of generated graphs in the database and
the ground truth graphs in Task 1. The number of nodes on each
side is randomly chosen from [5, 7]. They are all complete bipartite
graphs. The parameters are randomly initialized for 50 times.

Fig. 5 shows an example of generated graphs in the database
and the ground truth graphs in Task 2. The number of triangles for
each chain is randomly chosen from [3, 5]. The color set of each
triangle is either red-red-blue (P1, Fig. 5b), or purple-purple-green
(P2, Fig. 5c). The parameters are randomly initialized for 50 times.

(a) Bipartite (b) Butterfly (c) Star

Figure 4: Simple Subgraph Matching in Bipartite Graphs

(a) Chain (b) P1 (c) P2

Figure 5: Simple Subgraph Matching in Triangle Chain

(a) 3-Regular Graph

w/o Colors

(b) 2-Regular Graph w/

Colors

Figure 6: Ground Truth Graphs in GED-Based Evaluation

A.2 Task 2: GED-Based Evaluation

We use GED with edge weights, and normalize the edge weights of
learned hidden graphs into [0, 1] before computing GED. Given an
edge with weight 𝑤 , the cost of removing it is 𝑤 , and the cost of
fulfilling it is 1 −𝑤 . The cost of changing the node label is 1. In our
experiments, we do not need to add or delete node(s).

A sparsity (L1) loss of the hidden graphs is used and tuned to
prevent learning trivial solutions. In both Task 2-1 and Task 2-2,
the parameters are randomly initialized for 50 times. For each of
the tasks, we use the same initialization set to run the experiment
for several times. For Task 2-2, the sparsity loss is also adopted on
both hidden features, to avoid the local minimums. Fig. 6 shows
the ground truth graphs of Task 2 in GED-based evaluation.

B REPRODUCIBILITY

B.1 Configurations

The experiments are conducted on a stock Linux server with an
NVIDIA RTX A6000 GPU.
B.2 Search Space of Hyperparameters

Table 12: Search space of hyperparameters.

Application Hyperparameter Configurations

Anomaly Detection Epoch = 200, lr = 0.001, # of Subgraphs = [8, 16],
Subgraph Size = [5, 10], # of Steps = [2, 3]

Substructure Counting
Epoch = 500, lr = 0.01, # of Subgraphs = 8, Subgraph
Size = 6, Egonet Size = 6, hop = 1, # of Steps = [2, 3], #
of Layers = 1

Graph Classification
Epoch = 200, lr = 0.01, # of Subgraphs = 8, Subgraph
Size = 6, Egonet Size = 10, hop = 1, # of Steps = [2, 3],
# of Layers = 1

In Table 12, we report the search space we use for hyperparam-
eter search in each application in Sec. 5.1. Most hyperparameters
follow the default settings in iGAD [57] and KerGNN [13], since
they are proposed to improve the overall performance. For sub-
structure counting, in order to show that better extracted features
can be used more easily to solve the task, we limit the model to be
simple, as it is commonly done in linear probing [1, 3]. Since the
largest degree in the substructure counting dataset is 6, we set the
learnable subgraph size to 6 as well. For graph classification, we
use the default subgraph and egonet sizes from the original paper.

In Sec. 5.2, we run all the experiments with three random seeds
and report the average. In node classification, for homophily graphs,
the random walk step length is set to 4; for heterophily graphs,
TwiBot-22 and graph-level tasks, it is set to 2. For node classification
and the ogbg-molhiv dataset, the number of layers is set to 2; for
the ZINC and ogbg-pcba datasets, it is set to 6.
B.3 Dataset Statistics

We report the dataset statistics of each application in Table 13, 14,
15, 16 and 17. The “REDDIT” dataset, which originally includes
more than 200K graphs, is down-sampled for fast evaluation with
preserved class ratio.
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Table 13: Dataset statistics of graph anomaly detection.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC-257

# of Graphs 27, 770 39, 765 27, 509 40, 532 40, 353 40, 516 41, 472 40, 271 40, 004 39, 988
# of Anomalies 2, 294 3, 140 1, 568 2, 410 2, 057 2, 079 2, 298 2, 025 1, 955 1, 643
Avg. # of Nodes 26.4 26.1 26.4 26.1 26.1 26.1 22.1 26.1 26.1 26.1
Avg. # of Edges 28.5 28.1 28.5 28.1 28.1 28.1 23.6 28.1 28.1 28.1

Table 14: Dataset statistics of substructure counting.

Dataset Task Semantic # of Tasks # of Graphs Avg. # of Nodes Avg. # of Edges

CountingSub. Normalized number of substructures 4 1, 500/1, 000/2, 500 18.8 62.6

Table 15: Dataset statistics of graph classification.

Dataset MUTAG D&D NCI1 PROTEINS MUTAGEN TOX21 ENZYMES IMBD-B IMDB-M REDDIT

# of Graphs 188 1, 178 4, 110 1, 113 4, 337 8, 169 600 1, 000 1, 500 10, 155
# of Classes 2 2 2 2 2 2 6 2 3 2
Avg. # of Nodes 17.9 284.3 29.9 39.1 30.3 18.1 32.6 19.8 13.0 23.9
Avg. # of Edges 19.8 715.7 32.3 72.8 30.8 18.5 62.1 96.5 65.9 25.0

Table 16: Dataset statistics of node classification.

Dataset Cora CiteSeer PubMed Chameleon Squirrel Actor

# of Nodes 2, 709 3, 327 19, 717 2, 277 5, 201 29, 926
# of Edges 5, 429 4, 732 44, 338 36, 101 216, 933 7, 600
# of Classes 7 6 3 5 5 5

Table 17: Dataset statistics of graph classification and regression.

Dataset ZINC ogbg-molhiv ogbg-molpcba

Task Regression Classification Classification
# of Graphs 12, 000 41, 127 437, 929
Avg. # of Nodes 17.9 25.5 26.0
Avg. # of Edges 19.8 27.5 28.1
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