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Abstract. Given a large graph with few node labels, how can we (a) identify
whether there is generalized network-effects (GNE) or not, (b) estimate GNE to
explain the interrelations among node classes, and (c) exploit GNE efficiently
to improve the performance on downstream tasks? The knowledge of GNE is
valuable for various tasks like node classification and targeted advertising. How-
ever, identifying GNE such as homophily, heterophily or their combination is
challenging in real-world graphs due to limited availability of node labels and
noisy edges. We propose NETEFFECT, a graph mining approach to address the
above issues, enjoying the following properties: (i) Principled: a statistical test
to determine the presence of GNE in a graph with few node labels; (ii) General
and Explainable: a closed-form solution to estimate the specific type of GNE
observed; and (iii) Accurate and Scalable: the integration of GNE for accurate
and fast node classification. Applied on real-world graphs, NETEFFECT discov-
ers the unexpected absence of GNE in numerous graphs, which were recognized
to exhibit heterophily. Further, we show that incorporating GNE is effective on
node classification. On a million-scale real-world graph, NETEFFECT achieves
over 7x speedup (14 minutes vs. 2 hours) compared to most competitors.
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1 Introduction

Given a large graph with few node labels and no node features, how to check whether
the graph structure is useful for classifying nodes or not? Node classification is often
employed to infer labels on large real-world graphs. Since manual labeling is expensive
and time-consuming, it is common that only few node labels are available. For exam-
ple, in a million-scale social network, identifying even a fraction (say 5%) of users’
groups is prohibitive, limiting the application of methods that assume many labels are
given. Recently, with prevalence of graphs in industry and academia alike, there is a
growing need among users to know whether these graph structures provide meaning-
ful information for inference tasks. Therefore, before investing a huge amount of time
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Fig.1. NETEFFECT works well, thanks to its three novel contributions: (a) NETEFFECT_TEST
statistically the existence of GNE. (b) NETEFFECT_EST explains the graph with the X-ophily
compatibility matrix. (c) NETEFFECT_EXP wins and is fast.

and resources into potentially unsuccessful experiments, a preliminary test is earnestly
needed.

That is to say, we want to know whether the given graph has generalized network-
effects (GNE) or not. A graph with GNE provides meaningful information through the
structure that can be used to identify the labels of nodes. For example, “talkative per-
son tends to make friends with talkative ones” denotes homophily, while “teenagers
incline to interact with the ones that have opposite gender on social media” denotes het-
erophily. It is thus important to distinguish which GNE the graph has, i.e., homophily,
heterophily, or both (which we call “X-ophily”), if there is any. Given c classes, an intu-
itive way to describe GNE is via a ¢ X ¢ compatibility matrix, which shows the relative
influence between each class pair. It can be used to explain the graph property, as well
as be exploited to better assign the labels in the graph.

However, identifying GNE is commonly neglected in literature: inference-based
methods assume that the relationship is given by domain experts [4,6]; most graph
neural networks (GNN5s) assume homophily [9, 10,24]. Although some previous works
[14,16,25] use homophily statistics to analyze the given graph, our work has a very
different direction because of three reasons. First, they are designed to identify the
absence of homophily, and thus can not clearly distinguish GNE, which includes dif-
ferent non-homophily cases, i.e., heterophily, both, or no GNE. Second, to compute
accurate statistics, they use all the node labels in the graph, which is impractical during
node classification. Finally, their analysis rely heavily on the results of GNNs, which
means in addition to the graph structure, the node features also significantly influence
the conclusions of GNE. In contrast, our work aims to answer 3 research questions:

RQI1. Hypothesis Testing: How to identify whether the given graph has GNE or not,
with only few labels?

RQ2. Estimation: How to estimate GNE in a principled way, and explain the graph
with the estimation?

RQ3. Exploitation: How to efficiently exploit GNE on node classification with only
few labels?
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We propose NETEFFECT, with 3 contributions as the corresponding solutions:

1. Principled: NETEFFECT_TEST uses statistical tests to decide whether GNE exists
at all. Figure 1a shows how it works, and Fig.2 shows its discovery, where many
large real-world datasets known as heterophily graphs have little GNE.

2. General and Explainable: NETEFFECT_EST explains whether the graph is
homophily, heterophily, or X-ophily by precisely estimating the compatibility matrix
with the derived closed-form formula. In Fig. 1b, it explains the interrelations of
classes by the estimated compatibility matrix, which implies X-ophily.

3. Accurate and Scalable: NETEFFECT_EXP efficiently exploits GNE to perform
better in node classification. It wins in both accuracy and time on a million-scale
heterophily graph “Pokec-Gender”, only requiring 14 minutes (Fig. 1c).

Reproducibility: The code' and the extended version with appendix” are made public.

2 Background and Related Work

2.1 Background

Notation. Let G be an undirected and unweighted graph with n» nodes and m edges
and an adjacency matrix A. Each node ¢ has a unique label I(i) € {1,2,...,c}, where
c is the number of classes. Let £ € R™*¢ be the initial belief matrix with the prior
information, i.e., the labeled nodes. E;;, = 1ifl(i) = k, and E;;, = 0if [(¢) # k. For
the nodes without labels, their entries are set to 1/c. H € R°*¢ is a row-normalized
compatibility matrix, where H,, is the relative influence of class [ on class u. The
residual of a matrix around kis Y =Y — k x 1, where 1 is matrix of ones.

Belief Propagation (BP). FABP [11] and LINBP [6] accelerate BP by approximating
the final belief assignment. In particular, LINBP approximates the final belief as:
B=FE+ ABH, (1)

where B is a residual final belief matrix, initialized with zeros. The compatibility matrix
H and initial beliefs E are centered around 1/c to ensure convergence. HOLS [4] is a
BP-based method, which propagates the labels by weighing with higher-order cliques.

2.2 Related Work

Table 1 presents qualitative comparison of state-of-the-art approaches against our pro-
posed NETEFFECT. Notice that only NETEFFECT fulfills all the specs.

! https://github.com/mengchillee/NetEffect.
% https://arxiv.org/abs/2301.00270.
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Table 1. NETEFFECT matches all specs,
while baselines miss one or more. ‘?° and
‘N/A’ denote unclear and not applicable.
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thus can not handle large graphs. LINKX

Analysis by Homophily Statistics. Many
studies [14,16,25] utilize homophily ratio
to measure how common the labels of
the connected node pairs share the same
class. Our work focuses on very different
aspects, as discussed in the introduction.

Node Classification. GCN [9] and
APPNP [10] incorporate neighborhood
information to do better predictions and
assume homophily. MixHoP [1], GPR-
GNN [3], and H>GCN [25] make no
assumption of homophily. Nevertheless,
H>GCN requires too much memory and
[14] introduces multiple large heterophily

datasets, but it is not applicable to graphs without node features.

3 Proposed GNE Test

Given a graph with few labels, how can we identify whether the graph has generalized
network-effects (GNE) or not? In other words, how can we check whether the graph
structure is useful for inferring node labels? We propose NETEFFECT_TEST, a statis-
tical approach to identify the presence of GNE in a graph. Applying it to real-world

graphs, we show that many popular heterophily graphs exhibit little GNE.
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(d) “arXiv-Year”: Weak GNE (e) “Patent-Year”: Weak GNE (f) “Pokec-Gender”: Strong GNE
Datasets Genius Penn94 Twitch Patent-Year Pokec-Gender | arXiv-Year Synthetic
# of Nodes / Edges / Classes|422K / 985K / 2 42KM / 1.4M /2 168K / 6.8M / 2|1.3M /4.3M /51.6M /22.3M / 2|169K / 1.2M /5 1.2M / 34.0M / 6
Edge Homophily 0.618 0.470 0.545 0.132 0.425 0222 0314
h 0.080 0.046 0.090 0.000 0.000 0.272 0.245
GNE No GNE No GNE No GNE Heterophily Heterophily X-ophily X-ophily

(g) Homophily statistics of graphs and their GNE.

Fig.2. NETEFFECT_TEST works: It discovers that real-world heterophily graphs do not nec-
essarily have GNE. For each graph, we report the edge counting on the left (not available in
practice), and the p-value table output from NETEFFECT_TEST on the right, where “P” denotes
the presence of GNE, and “F” denotes the absence of GNE.
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3.1 NETEFFECT_TEST
We first provide two main definitions regarding GNE:

Definition 1. If the nodes with class c; in a graph tend to connect randomly to the
nodes with all classes 1, . . . , c (with no specific preference), class c; has no GNE.

Definition 2. If all classes in a graph have no GNE, this graph has no GNE.

We distinguish heterophily graphs from those with no GNE by the definition. In
heterophily graphs, the nodes of a specific class are likely to be connected to the nodes
of other classes, such as in bipartite graphs that connect different classes of nodes. In
this case, knowing the label of a node gives meaningful information about the labels
of its neighbors. On the other hand, if a graph has no GNE, knowing the label of a
node gives no useful information about its neighbors. In other words, the structural
information of a graph is not useful to infer the unknown labels of nodes.

Next we describe how we propose to determine the existence or absence of GNE.
In the inner loop, we need to decide whether class ¢; (say, “talkative people”), has
statistically more, or fewer edges to class c; (say, “silent people”). We propose to use
Pearson’s x? test for that. Specifically, given a class pair (c;, ¢;), the input to the test
is a 2 x 2 contingency table containing the counts of edges that connect pairs of nodes
whose labels are in {¢;, ¢; }. The null hypothesis of the test is:

Null Hypothesis 1 Edges are equally likely to exist between nodes of the same class
and those of different classes.

If the p-value from the test is no less than 0.05, we accept the null hypothesis, which
represents that the chosen class pair (c;, ¢;) exhibits no statistically significant GNE in
the graph. Then we call them mutually indistinguishable:

Definition 3 (Mutually indistinguishable). Two classes c; and c; are mutually indis-
tinguishable if we can not reject the null hypothesis above.

Novel Implementation Details. The detailed procedure of NETEFFECT_TEST is in
Appx. B.1. A practical challenge on the test is that if the numbers in the table are too
large, p-value becomes very small and meaningless [15]. Uniform edge sampling can
be a natural solution, but sampling for only a single round can be unstable and out-
put very different results. To address this, we combine p-values from different random
sampling by Universal Inference [23]. We firstly sample edges to add to the contin-
gency table until the frequency is above a specified threshold, and compute the 2 test
statistic for each class pair. Next, following Universal Inference, we repeat the proce-
dure for random samples of edges for B rounds and average the statistics. At last, we
use the average statistics to compute the p-value table F'. . of x? tests. Our NETEF-
FECT_TEST is robust to noisy edges thanks to the sampling process, and works well
given either a few or many node labels. Given a few observations, the x? test works
well when the frequency in the contingency table is at least 5; given many observations,
our sampling trick ensures the correctness and the consistency of the computed p-value.
If a class accepts the null hypotheses with all other classes, this class has little GNE,
and satisfies Def. 1. Moreover, if all classes exhibit little GNE, the whole graph satisfies
Def. 2. In that case, no label propagation methods will help with node classification.
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3.2 Discoveries on Real-World Graphs

We apply NETEFFECT_TEST to 6 real-world graphs and analyze their GNE. For each
dataset, we sample 5% of node labels and compute the p-value table using NETEF-
FECT_TEST. This is because a) only few labels are available in most node classification
tasks in practice, and thus it is reasonable to make the same assumption in the analysis,
and b) NETEFFECT_TEST can analyze GNE even from partial observations. B is set to
1000 to output stable results. Based on Def. 2 our surprising discoveries are:
Discovery 1 (No GNE) NETEFFECT_TEST identifies the lack of GNE in “Genius” [13],
“Penn94” [21], and “Twitch” [18]. They are widely known as heterophily graphs. In
“Genius” (Fig. 2a), we see that both classes 1 and 2 tend to connect to class 1, making
class 2 indistinguishable by the graph structure. NETEFFECT_TEST thus accepts the
null hypothesis, and identifies the lack of GNE. We can observe a similar phenomenon
in “Penn94” (Fig. 2b). “Twitch” (Fig. 2c) used to be considered as a heterophily graph
because of its weak homophily effect, but NETEFFECT_TEST finds that each of the
classes uniformly connects to both classes, and thus it has little GNE.

Discovery 2 (Heterophily and X-ophily) NETEFFECT_TEST identifies GNE in “Arxiv-
Year”, “Patent-Year”, and “Pokec-Gender”. While “Patent-Year” and ‘“Pokec-
Gender” exhibit heterophily (Fig.2e and 2f), “Arxiv-Year” exhibits X-ophily, i.e., not
straight homophily or heterophily (Fig. 2d). They are thus used in our experiments.
Discovery 3 (Weak vs strong GNE) NETEFFECT_TEST identifies weak, and strong
GNE: “Arxiv-Year” and “Patent-Year” exhibit weak GNE; and ‘“Pokec-Gender”
exhibits strong GNE. We consider graphs to have weak GNE if there exists at least
one class which is not distinguishable from some other classes. Such graphs limit the
accuracy of node classification, compared with graphs with strong GNE (i.e., all classes
have GNE), regardless of the specific method used for classification.

Discussion of Homophily Statistics. In Fig. 2g, we report two homophily statistics.
Edge homophily [25] is the edge ratio that connect two nodes with the same class, and
h [14] is an improved metric which is insensitive to the class number and size. We
find even using all labels, they are not enough to capture the interrelations of all class
pairs in detail, and the graphs with low homophily statistics are not guaranteed to be
heterophily. They can only detect the absence of homophily, instead of distinguishing
different non-homophily cases, including heterophily, X-ophily, and no GNE. In con-
trast, our NETEFFECT_TEST identifies whether the graph exhibits GNE or not from
only a few labels.

4 Proposed GNE Estimation

Given that a graph exhibits GNE, how can we estimate the all-pair relations between
classes? A compatibility matrix is a natural strategy to describe the relations, which
has been widely used in the literature. We propose NETEFFECT_EST, which turns the
compatibility matrix estimation into an optimization problem based on a closed-form
formula. NETEFFECT_EST not only overcomes the limitation of naive edge counting,
but is also robust to noisy observations even with few observed labels.
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4.1 Why NOT Edge Counting

The graph in Fig. 3a exhibits heterophily between class pairs (1,2) and (3,4), while
it exhibits homophily in classes 5 and 6. A compatibility matrix is commonly used in
existing studies, but assumed given by domain experts, instead of being estimated. A
naive way to estimate it is via counting labeled edges, but it has two limitations: 1)
rare labels are neglected, and 2) it is noisy or biased due to few labeled nodes. The
result is even more unreliable if the given labels are imbalanced. In Fig. 3, we upsample
the training labels 10x for class 1 using the graph in Fig. 1b. Edge counting in Fig. 3b
biases towards the upsampled class and clearly fails to estimate the correct compatibil-
ity matrix in Fig. 3a, while our proposed NETEFFECT_EST succeeds in Fig. 3c. This
commonly occurs in practice, since we observe only limited labels, and becomes fatal
if the observed distribution is different from the true one.

4.2 Closed-Form Formula

We begin the derivation by rewriting Eqn. 1 of BP. The main insight is reminiscent of
‘leave-one-out’ cross validation. That is, we find H that would make the results of the
propagation (RHS of Eqn. 2) to the actual values (LHS of Eqn. 2):

E ~ AEH 2)
~
reality estimate

Formally, we want to minimize the difference between the reality and the estimate:

HEHZZ”EM*Z > EjH, 3

i€P u=1 k=1 EN ()P

where N (i) denotes the neighbors of node . In other words, we aim to minimize the
difference between initial belief E of each node i € P by the ones of its neighbors
N(i) € P, ie., N(i) NP. To estimate the compatibility matrix H, we solve the opti-
mization problem in Eqn. 3 with the proposed closed-form formula:

Lemma 1 (Network Effect Formula (NEF)). Given adjacency matrix A and initial
beliefs E, the closed-form solution of vectorized compatibility matrix vec(H) is:

vee(H) = (XTX)'1XxTy 4)

where X = Iy, ® (AE) and y = vec(E).

Proof. See Appx. A.l. |
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case well. Labels of class 1 is upsampled. prefers well-connected neighbors.

4.3 NETEFFECT_EST

The algorithm is presented in Alg. 1. In practice, we can use any form of adjacency
matrix for the estimation. The proposed NEF allows us to estimate the compatibility
matrix by solving this optimization problem, but there still exists a practical challenge
that need to be addressed. With few labels, it is difficult to properly separate them into
training and validation sets for the regression, and the estimation can easily be inter-
fered by the noisy observations. We thus use ridge regression with leave-one-out cross-
validation (RidgeCV) instead of the regular linear regression. This allows us to fully
utilize the observations without having biases caused by random splits of training and
validation sets. Moreover, the regularization effect of RidgeCV makes the compatibility
matrix more robust to noisy observations. It is noteworthy that its computational cost is
negligible.

Algorithm 1: NETEFFECT_EST

Data: Adjacency matrix A, initial belief E, and priors P
Result: Estimated compatibility matrix H
1 X —I.x.®(AE); // feature matrix
2y — vee(E); // target vector
3 Extract indices ¢ with nodes in priors P;
4 H — RidgeCV (Xi],yli));
s Return H ;

5 Proposed GNE Exploitation

We propose NETEFFECT_EXP to exploit GNE for accurate and fast node classification
with few labels. With few labels, it becomes crucial to better utilizing the graph struc-
ture. First, we address this by paying attention to influential neighbors by the proposed
“emphasis” matrix; and then describe NETEFFECT_EXP with theoretical analysis.

5.1 ‘“Emphasis” Matrix

Rationale and Overview. With few priors, we propose to better utilize the graph struc-
ture, by paying attention to only the most important part of it. That is to say, not all
neighbors are equally influential: In Fig.4, best practice shows that well-connected
neighbors (i.e., nodes ‘B’, ‘C’, and ‘D’) have more influence on node ‘A’ than the rest.
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Thus, we propose “emphasis” matrix A*, to pay attention to such neighbors. NET-
EFFECT_EST can also benefit from it by replacing A with A*, where we denote the
improved compatibility matrix as H . Alg. 2 shows the details. In short, it has 3 steps:

1. Favors influential neighbors by quickly approximating the node-to-node proximity
using (non-backtracking) random walks with restarts (lines 2-5);

2. Touches-up the new node-proximity by applying a series of transformations (includ-
ing the best-practice element-wise logarithm) on the proximity matrix (line 6);

3. Symmetrizes and weighs the adjacency matrix with structural-aware embedding
(lines 7-8), giving higher weights to neighbors with closer embeddings (line 9).

Algorithm 2: “Emphasis” Matrix

Data: Adjacency matrix A, number of trials M, number of steps L, and dimension d
Result: Emphasis matrix A*

1 W Onxns
/* approximate proximity matrix by random walk */
2 for node i in G do
3 form=1,..., M do
4 for j € W,,(i,L) do
5 L | Wi, =W, +1;
/+ masking, degree normalization and logarithm */
6 Wasn = log (DTH (W' © A));
7 Unxd, Saxd, Vs, — SVD(W, d); // embedding
8 U «— \/EU; // scaling
/* boost weights of close-embedded neighbors */

e

Weigh A7, where A}, = S(U;,U;),V{i, j|Aij = 1};

nxXn?
10 Return A*;

Proximity Matrix Approximation. We propose to utilize random walks to approxi-
mate the proximity matrix. The approximated proximity matrix W' ; records the times
we visit node j if we start a random walk from node ¢. Only the well-connected neigh-
bors will be visited more often. We theoretically show that it converges quickly:

Lemma 2 (Convergence of Random Walks). With probability 1 — 6, the error ¢
between the approximated and true distributions for a node walking to its 1-hop neigh-

. . . L—1)/2 log (2/0
bor by random walks of length L with M trials is no greater than K T )/2] \/ EL(AQ ).

We can make the convergence even faster by using “non-backtracking” random
walks [2]. Given the start node s and walk length L, its function is defined as follows:

w; € N(w;—1),Vl € [1, L]

. 5
wi—1 75 wl+1,Vl € [I,L — 1] )

W(s,L) = {(wo =8,..., W)

Thanks to it, we improve Lemma 2 to have a tighter bound of error e:

Lemma 3 (Convergence of Non-backtracking Random Walks). With the same con-
dition as in Lemma 2, the error € by non-backtracking random walks is no greater than

L-1)/3] [log(2/8
[( L)/W gL(AZ).

Proof. See Appx. A.2. |
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Structural-Aware Node Representation. Based on W, we apply a series of trans-
formations to generate better and unbiased representations of nodes in a fast way. An
element-wise multiplication by A is done to keep the approximation of 1-hop neighbor
for each node, which is sparse but supplies sufficient information. We use the inverse of
the degree matrix D! to reduce the influence of nodes with large degrees. This pre-
vents them from dominating the pairwise distance by containing more elements in their
rows. The element-wise logarithm rescales the distribution in W, in order to enlarge the
difference between smaller structures. We use Singular Value Decomposition (SVD) for
efficient rank-d decomposition of sparse W, and multiply the left-singular vectors U
by the squared eigenvalues v/X to correct the scale.

“Emphasis” Matrix Construction. Directly measuring the node similarity in the
graph is not trivial, or may be time consuming (e.g., by counting motifs). Therefore,
we propose to compute the node similarity via the structural-aware node representa-
tions, which capture the higher-order information, and construct the “emphasis” matrix
A" by weighing A with the node similarity. The intuition is that the nodes that are
closer in the embedding space are better connected with higher-order structures. The
similarity function is S(U;,U;) = e PWirUsk) where e is the Euler’s number. It is
a universal law [19], which turns the distance into similarity, and bounds it from 0 to 1.
While D can be any distance metric, we use Euclidean as it works well empirically.

5.2 NETEFFECT_EXP

The algorithm of NETEFFECT_EXP is in Appx. B.2. NETEFFECT_EXP takes as input
the “emphasis” matrix A*, the compatibility matrix H estimated by A*, and the initial
beliefs E. It computes the beliefs B iteratively by aggregating the beliefs of neighbors
through A™ until they converge. This reusage of A* aims to draw attention to the neigh-
bors that are more structurally important. By exploiting GNE with H *, NETEFFECT
propagates properly in heterophily graphs.

Convergence Guarantee. To ensure the convergence of NETEFFECT_EXP, we intro-
duce a scaling factor f during the iterations. A smaller f leads to a faster convergence
but distorts the results, thus we set f to 0.9/p(A™). Its exact convergence is:

Lemma 4 (Exact Convergence). The criterion for the exact convergence of NETEF-
FECT_EXPis 0 < f < 1/p(A™), where p(-) denotes the spectral radius of the matrix.

Proof. See Appx. A.3. |

Complexity Analysis. NETEFFECT_EXP uses sparse matrix representation of graphs
and scales linearly. Its complexity is:

Lemma 5. The time complexity of NETEFFECT_EXP is approximately O(m) and the
space complexity is O(max (m,n - L+ M) +n - c?).

Proof. See Appx. A.4. |
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6 Experiments

In this section, we aims to answer the following questions:

QI. Accuracy: How well does NETEFFECT work by estimating and exploiting GNE?
Q2. Scalability: How does the running time of NETEFFECT scale w.r.t. graph size?
Q3. Explainability: How does NETEFFECT explain the real-world graphs?

Datasets. We focus on large graphs and include 8 graphs with at least 20K nodes. For
each dataset, we sample only a few node labels for training for five times and report the
average. “Synthetic” is the enlarged graph in Fig. 1b, which exhibits X-ophily GNE.

Baselines. We compare NETEFFECT with five baselines and separate them into four
groups: General GNNs: GCN [9], APPNP [10]. Heterophily GNNs: MIxHoP [1],
GPR-GNN [3]. BP-based methods: HOLS [4]. Our proposed methods: NETEFFECT-
Hom and NETEFFECT. NETEFFECT-Hom is NETEFFECT using identity matrix as com-
patibility matrix, which assumes homophily and does not handle GNE.

Experimental Settings. For GNNs, one-hot node degrees are used as the node features,
as implemented by PyG [5]. Experiments are run on a server with 3.2GHz Intel Xeon
CPU. Details of the experimental setup are in Appx. C.

Table 2. NETEFFECT wins on X-ophily and Heterophily datasets.

Dataset Synthetic Pokec-Gender [20] arXiv-Year [8] Patent-Year [12]
# of Nodes / Edges / Classes 1.2M/34.0M/ 6 1.6M/22.3M /2 169K/ 1.2M /5 1.3M/43M/5
Label Fraction 4% 0.4% 4% 4%

GNE Strength Strong X-ophily Strong Heterophily Weak X-ophily Weak Heterophily
Method Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time
GCN 16.740.0 3456 4.1x | 51.8£0.1 2906 3.4x |35.340.1 132 2.5% |26.040.0 894 2.3x
APPNP 18.6+1.1 7705 9.2x |50.940.3 6770 7.8x33.5+£0.2 423 8.1x |27.540.2 2050 5.2x
MixHop 16.7£0.0 58391 70.0x | 53.4£12 53871 62.1x F 2983 57.4x268+0.1 18787 47.6x
GPR-GNN 18.9+1.2 7637 9.1x |50.740.2 6699 7.7x30.1+£1.4 400 7.7x | 25.340.1 2034 5.1%x
HOLS 46.1£0.1 1672 2.0x | 54.4£0.1 8552 9.9x |34.1£0.3 566 10.9x | 23.640.0 510 1.3x
NETEFFECT-Hom | 45.620.1 569402 869 d 37.0£0.3 243£00 429 Lix

Table 3. NETEFFECT wins on Homophily datasets.

Dataset Facebook [17] GitHub [17] arXiv-Category [22] Pokec-Locality [20]
# of Nodes / Edges / Classes 22.5K /171K /4 37.7K /289K /2 169K / 1.2M / 40 1.6M /22.3M /10
Label Fraction 4% 4% 4% 0.4%

Method Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time | Accuracy Time (s) Rel. Time
GCN 67.040.8 12 2.0x | 81.0+0.6 28 2.2x 254403 216 23x|17.3+£0.4 4002 2.9x
APPNP 50.54+2.2 46 7.7x | 74.240.0 73 5.6 | 19.4+0.6 1176 12.3% | 16.8£1.7 11885 8.6
MixHop 69.240.7 296 49.3x | 77.8+1.3 526 40.5x | 33.0+0.6 3203 33.4x 169403 52139 37.9x
GPR-GNN 51.9+1.5 47 7.8x | 74.1£0.1 75 5.8x | 19.7£0.3 1174 12.2x 30.0+£2.0 11959 8.7x
HOLS 934 155.7x | 80.8+0.5 126 9.7x |61.4£0.2 627 6.5x | 63.7+0.3 8139 5.9x%

NETEFFECT-Hom 1437 -
NETEFFECT 852405 6 813405 13 10x 588406 108 Lix 648408 [NI877 | 1.0x

6.1 Q1 - Accuracy

In Table 2 and 3, we report the accuracy and running time. We highlight the top three
from dark to light by g, - and  denoting the first, second and third place. In summary,
NETEFFECT wins on X-ophily, heterophily and homophily graphs.
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X-ophily and Heterophily. In Table2, NETEFFECT outperforms all the competitors
significantly by more than 34.3% and 12.9% accuracy on “Synthetic” and “Pokec-
Gender”, respectively. These graphs exhibit strong GNE, thus NETEFFECT boosts
the accuracy owing to precise estimations of compatibility matrix. Heterophily GNNs
give results close to majority voting when the observed labels are not adequate. With
homophily assumption, General GNNs and BP-based methods also not perform well.
Both “arXiv-Year” and “Patent-Year” have weak GNE (Sec. 3.2). Even so, NETEF-
FECT still outperforms the competitors by estimating a reasonable compatibility matrix
(Fig. 6¢).

Homophily. In Table 3, NETEFFECT-Hom outperforms all the competitors on 3 out of
4 homophily graphs, namely “GitHub”, “arXiv-Category” and “Pokec-Locality”, and
NETEFFECT performs similarly to NETEFFECT-Hom. In addition, NETEFFECT-Hom
performs competitively with HOLS on “Facebook™, while being 155.7 % faster.

Ablation Study. Our optimizations make a difference. We evaluate different compati-
bility matrices — (i) NETEFFECT-EC uses edge counting on the labels of adjacent nodes
in the priors, and (ii)) NETEFFECT-A uses the adjacency matrix instead of “emphasis”
matrix as the input of NETEFFECT_EST. To evaluate the cases when imbalanced labels
are given, we upsample 5% labels to the class with the fewest labels in the datasets with
weak GNE during the estimation. In Table 4, we find that NETEFFECT outperforms
all its variants in all datasets. In the graphs with strong GNE, NETEFFECT shows its
robustness to the structural noises and gives better results. In the imbalanced graphs,
while NETEFFECT-EC brings its vulnerability to light, NETEFFECT stays with high
accuracy. This study highlights the importance of a compatibility matrix estimation, as
well as forming it into an optimization problem as shown in Lemma 1.

6.2 Q2 - Scalability

NETEFFECT is scalable and thrifty. We vary the edge number in “Pokec-Gender” and
plot against the running time, including training and inference. In Fig. 5, NETEFFECT
scales linearly as expected (Lemma 5). Table 5 shows the estimated AWS dollar cost in
“Pokec-Gender”, assuming that we use a CPU machine for NETEFFECT, and a GPU
one for GCN. NETEFFECT achieves up to 45x savings. Details in Appx. C.3.

6.3 Q3 - Explainability

Figure 6 shows the compatibility matrices that NETEFFECT recovered. In a nutshell,
the results agree well with the intuition. For “Synthetic”, NETEFFECT matches the
answer used for graph generation. For “Pokec-Gender” (Fig. 6a), NETEFFECT report
heterophily, where people incline to have more opposite gender interactions [7]. For
“arXiv-Year” and “Patent-Year”, NETEFFECT find that papers and patents tend to cite
the ones published in nearby years, which also agrees with intuition (Fig. 6b and 6c).
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Table 4. Ablation Study: Estimating compat- Table 5. NETEFFECT is thrifty. AWS dollar
ibility matrix by proposed “emphasis” matrix cost ($) is reported, by t3.small and p3.2xlarge.
is essential.

Datasets GNE Strength | NETEFFECT-Hom NETEFFECT-EC NETEFFECT-A NETEFFECT
Synthetic ston 771400 68.0-£0.1 774400 Datasets NETEFFECT GCN
Pokec-Gender ¢ 56.9:0.1 64902 648202
arXiv-Year (imba) | 370403 36.5£1.0 357406 Pokec-Gender $12.61 (45.0%)
eal
Patent-Year (imba.) 241200 24009 .
Pokec-Locality $13.66 (29.1 %)
10
Est. Comp. Matrix Est. Comp. Matrix o8 Est. Comp. Matrix
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Fig.5. NETEFFECT is scalable. It is Fig.6. NETEFFECT is explainable. Our

fast and scales linearly with the edge estimated compatibility matrices are much

number. more robust to noises compared to edge
counting (in Fig. 2).

7 Conclusions

We analyze the generalized network-effects (GNE) in node classification in the presence
of only few labels. Our proposed NETEFFECT has the following desirable properties:

1. Principled: NETEFFECT_TEST to statistically identify the presence of GNE,

2. General and Explainable: NETEFFECT_EST to estimate GNE with derived closed-
form solution, if there is any, and

3. Accurate and Scalable: NETEFFECT_EXP to efficiently exploit GNE for better per-
formance on node classification.

Applied on a real-world graph with 22.3M edges, NETEFFECT only requires 14 min-
utes, and outperforms baselines on both accuracy and speed (> 7x).
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