
Less is More: SlimG for Accurate, Robust, and Interpretable

Graph Mining

Jaemin Yoo∗
Carnegie Mellon University

Pittsburgh, USA
jaeminyoo@cmu.edu

Meng-Chieh Lee∗
Carnegie Mellon University

Pittsburgh, USA
mengchil@cs.cmu.edu

Shubhranshu Shekhar
Carnegie Mellon University

Pittsburgh, USA
shubhras@andrew.cmu.edu

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, USA
christos@cs.cmu.edu

ABSTRACT

How can we solve semi-supervised node classification in various
graphs possibly with noisy features and structures? Graph neural
networks (GNNs) have succeeded in many graph mining tasks, but
their generalizability to various graph scenarios is limited due to
the difficulty of training, hyperparameter tuning, and the selection
of a model itself. Einstein said that we should “make everything as
simple as possible, but not simpler.” We rephrase it into the careful
simplicity principle: a carefully-designed simple model can surpass
sophisticated ones in real-world graphs. Based on the principle,
we propose SlimG for semi-supervised node classification, which
exhibits four desirable properties: It is (a) accurate, winning or tying
on 10 out of 13 real-world datasets; (b) robust, being the only one that
handles all scenarios of graph data (homophily, heterophily, random
structure, noisy features, etc.); (c) fast and scalable, showing up to
18× faster training in million-scale graphs; and (d) interpretable,
thanks to the linearity and sparsity.We explain the success of SlimG
through a systematic study of the designs of existing GNNs, sanity
checks, and comprehensive ablation studies.

CCS CONCEPTS

• Computing methodologies → Machine learning algorithms.

KEYWORDS

graph neural networks, semi-supervised node classification
ACM Reference Format:

Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos.
2023. Less is More: SlimG for Accurate, Robust, and Interpretable Graph
Mining. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA,

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3580305.
3599413

1 INTRODUCTION

How can we solve semi-supervised node classification in various
types of graphs possibly with noisy features and structures? Graph
neural networks (GNNs) [7, 9, 14, 31] have succeeded in various
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599413

Graph

Noisy
Noisy

Homophily
Heterophily

Feature

Semantic
Homophily

Noisy

Homophily
Heterophily

Heterophily
Semantic
Semantic

SGC S2GC SAGE

Structural
Structural

✓

✓

✓

✓ ✓

✓

SlimG

✓

GCNII GPR

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓ ✓

✓

✓

Figure 1: SlimG wins on all sanity checks. Each row is a spe-

cific scenario of graph data that we propose for comprehen-

sive evaluation in Section 5. The table is generated from the

actual accuracy in Table 2: ✓ means the accuracy ≥ 80%.

graph mining tasks such as node classification, clustering, or link
prediction. However, due to the difficulty of training, hyperparame-
ter tuning, and even the selection of a model itself, many GNNs fail
to show their best performance when applied to a large testbed that
contains real-world graphs with various characteristics. Especially
when a graph contains noisy observations in its features and/or its
graphical structure, which is common in real-world data, existing
models easily overfit their parameters to such noises.

In response to the question, we propose SlimG, our novel clas-
sifier model on graphs based on the careful simplicity principle: a
simple carefully-designed model can be more accurate than com-
plex ones thanks to better generalizability, robustness, and easier
training. The four design decisions of SlimG (D1-4 in Sec. 4) are
carefully made to follow this principle by observing and addressing
the pain points of existing GNNs; we generate and combine various
types of graph-based features (D1), design structure-only features
(D2), remove redundancy in feature transformation (D3), and make
the propagator function contain no hyperparameters (D4).

The resulting model, SlimG, is our main contribution (C1) which
exhibits the following desirable properties:

• C1.1 - Accurate on both real-world and synthetic datasets,
almost alwayswinning or tying in the first place (see Figure 2,
Table 2, and Table 3).

• C1.2 - Robust, being able to handle numerous real settings
such as homophily, heterophily, no network effects, useless
features (see Figure 1 and Table 2).

• C1.3 - Fast and scalable, using carefully chosen features,
it takes only 32 seconds on million-scale real-world graphs
(ogbn-Products) on a stock server (see Figure 2).

• C1.4 - Interpretable, learning the largest weights on in-
formative features, ignoring noisy ones, based on the linear
decision function (see Figure 5).

3128

https://doi.org/10.1145/3580305.3599413
https://doi.org/10.1145/3580305.3599413
https://doi.org/10.1145/3580305.3599413
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599413&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

101 102

Run Time (s)

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

ogbn-arXiv
SlimG (Ours)
LR
Reg. Kernel
Diff. Kernel
RW Kernel
SGC
DGC
S2GC
G2CN
GCN
SAGE
GCNII
H2GCN
APPNP
GPRGNN
GAT

10.4x
Faster

3.5%
Higher

1023 × 101 4 × 101 6 × 101

Run Time (s)
55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

ogbn-Products
SlimG (Ours)
LR
Reg. Kernel
Diff. Kernel
RW Kernel
SGC
DGC
S2GC
G2CN
GCN
SAGE
GCNII
H2GCN
APPNP
GPRGNN
GAT

 2.5x
Faster

10.3%
Higher

101 102 103

Run Time (s)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

 (%
)

Pokec
SlimG (Ours)
LR
Reg. Kernel
Diff. Kernel
RW Kernel
SGC
DGC
S2GC
G2CN
GCN
SAGE
GCNII
H2GCN
APPNP
GPRGNN
GAT

18.0x
Faster

4.1%
Higher

Figure 2: SlimG wins both on accuracy and training time on (left) ogbn-arXiv, (middle) ogbn-Products, and (right) Pokec, which

are large real-world graphs (1.2M, 61.9M, and 30.6M edges, resp.). Several baselines run out of memory (crossed out).

2 1 0 1 2
Value of x

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 y Answer: f(x) = 0.5
f1(x) = c
f2(x) = bx + c
f3(x) = ax2 + bx + c

Figure 3: Why ‘less is more’: The simple model 𝑓0 (𝑥) = 𝑐 (in
blue) matches the reality (in solid purple), while richer mod-

els with more polynomial powers end up capturing noise in

the given data: the tiny downward trend by 𝑓1 (𝑥) (in red) and

the spurious curvature by 𝑓2 (𝑥) (in green).

Not only we propose a carefully designed, effective method (in
Sec. 4), but we also explain the reasons for its success. This is thanks
to our three additional contributions (C2-4):

• C2 - Explanation (Sec. 3):We propose GnnExp, a frame-
work for the systematic linearization of a GNN. As shown
in Table 1, GnnExp highlights the similarities, differences,
and weaknesses of successful GNNs.

• C3 - Sanity checks (Sec. 5): We propose seven possible
scenarios of graphs (homophily, heterophily, no network
effects, etc.), which reveal the strong and weak points of
each GNN; see Figure 1 with more details in Table 2.

• C4 - Experiments (Sec. 6): We conduct extensive experi-
ments to better understand the success of SlimG even with
its simplicity. Our results in Tables 5 to 9 show that SlimG
effectively selects the most informative component in each
dataset, fully exploiting its robustness and generality.

Less is more. Our justification for the counter-intuitive success
of simplicity is illustrated in Figure 3: A set of points are uniformly
distributed in 𝑥 ∈ (−1, 1) and 𝑦 ∈ (0, 1), and the fitting polynomials
𝑓𝑖 (𝑥) with degree 𝑖 = 0, 1 and 2 are given. Notice that the simplest
model 𝑓0 (blue line) matches the true generator 𝑓 (𝑥) = 0.5. Richer
models use the 1st and the 2nd degree powers (many cooks spoil the

broth) and end up modeling tiny artifacts, like the small downward
slope of 𝑓1 (red line), and the curvature of 𝑓2 (green line). This ‘many
cooks’ issue is more subtle and counter-intuitive than overfitting, as

𝑓2 and 𝑓3 have only 2 to 3 unknown parameters to fit to the hundred
data points: even a small statistical can fail if it is not matched with
the underlying data-generating mechanism.

Reproducibility. Our code, along with our datasets for sanity
checks, is available at https://github.com/mengchillee/SlimG.

2 BACKGROUND AND RELATEDWORKS

2.1 Background

We define semi-supervised node classification as follows:
• Given An undirected graph 𝐺 = (A,X), where A ∈ R𝑛×𝑛 is
an adjacency matrix, X ∈ R𝑛×𝑑 is a node feature matrix, 𝑛
is the number of nodes, and 𝑑 is the number of features.

• Given The labels y ∈ {1, · · · , 𝑐}𝑚 of𝑚 nodes in 𝐺 , where
𝑚 ≪ 𝑛, and 𝑐 is the number of classes.

• Predict The unknown classes of 𝑛 −𝑚 test nodes.
We use the following symbols to represent adjacency matrices

with various normalizations and/or self-loops. Ã = A + I is the ad-
jacency matrix with self-loops. D̃ = diag(Ã1𝑛×1) is the diagonal
degree matrix of Ã, where 1𝑛×1 is the matrix of size 𝑛 × 1 filled
with ones. Ãsym = D̃−1/2ÃD̃−1/2 is the symmetrically normalized
Ã. Similarly, Asym = D−1/2AD−1/2 is also the symmetrically nor-
malized A but without self-loops. We also use a different type of
normalization Arow = D−1A (and accordingly Ãrow), which we call
row normalization, based on the position of the matrix D.

As a background, we define logistic regression (LR) as a function
to find the weight matrix W that best maps given features to labels
with a linear function.

Definition 1 (LR). Given a feature X ∈ R𝑛×𝑑 and a label y ∈ R𝑚 ,

where𝑚 is the number of observations such that𝑚 ≤ 𝑛, let Y ∈ R𝑚×𝑐

be the one-hot representation of y, and 𝑦𝑖 𝑗 be the (𝑖, 𝑗)-th element in

Y. Then, logistic regression (LR) is a function that finds an optimal

weight matrix W ∈ R𝑑×𝑐 from X and y as follows:

LR(X, y) = argmax
W

𝑚∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝑦𝑖 𝑗 log softmax𝑗 (W⊤x𝑖), (1)

where softmax𝑗 (·) represents selecting the 𝑗-th element of the result

of the softmax function. We omit the bias term for brevity.

2.2 Related Works

We introduce related works categorized into graph neural networks
(GNN), linear GNNs, and graph kernel methods.

3129

https://github.com/mengchillee/SlimG

Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Graph neural networks. There exist many recent GNN vari-
ants; recent surveys [34, 38] group them into spectral models [5, 14],
sampling-based models [9, 36, 40], attention-based models [2, 13,
31], and deep models with residual connections [3, 19]. Decoupled
models [4, 15, 16] separate the two major functionalities of GNNs:
the node-wise feature transformation and the propagation. GNNs
are often fused with graphical inference [11, 37] to further improve
the predicted results. These GNNs have shown great performance
in many graph mining tasks, but suffer from limited robustness
when applied to graphs with various characteristics possibly having
noisy observations, especially in semi-supervised learning.

Linear graph neural networks.Wu et al. [33] proposed SGC
by removing the nonlinear activation functions of GCN [14], reduc-
ing the propagator function to a simple matrix multiplication. Wang
et al. [32] and Zhu and Koniusz [39] improved SGC by manually
adjusting the strength of self-loops with hyperparameters, increas-
ing the number of propagation steps. Li et al. [20] proposed G2CN,
which improves the accuracy of DGC [32] on heterophily graphs
by combining multiple propagation settings (i.e. bandwidths). The
main limitation of these models is the high complexity of propaga-
tor functions with many hyperparameters, which impairs both the
robustness and interpretability of decisions even with linearity.

Graph kernel methods. Traditional works on graph kernel
methods [12, 28] are closely related to linear GNNs, which can be
understood as applying a linear graph kernel to transform the raw
features. A notable limitation of such kernel methods is that they are
not capable of addressing various scenarios of real-world graphs,
such as heterophily graphs, as their motivation is to aggregate
all information in the local neighborhood of each node, rather
than ignoring noisy and useless ones. We implement three popular
kernel methods as additional baselines and show that our SlimG
outperforms them in both synthetic and real graphs.

3 PROPOSED FRAMEWORK: GNNEXP

Why do GNNs work well when they do? In what cases will a GNN
fail? We answer these questions with GnnExp, our proposed frame-
work for revealing the essence of each GNN. The idea is to derive
the essential feature propagator function on which each variant is
based, ignoring nonlinearity, so that all models are comparable on
the same ground. The observations from GnnExp motivate us to
propose our method SlimG, which we describe in Section 4.

Definition 2 (Linearization). Given a graph 𝐺 = (A,X), let 𝑓 (·;𝜃)
be a node classifier function to predict the labels of all nodes in 𝐺 as

ŷ = 𝑓 (A,X;𝜃), where 𝜃 is the set of parameters. Then, 𝑓 is linearized
if 𝜃 = {W} and the optimal weight matrix W∗ ∈ Rℎ×𝑐 is given as

W∗ = LR(P(A,X), y), (2)

where P is a feature propagator function that is linear with X and

contains no learnable parameters, and P(A,X) ∈ R𝑛×ℎ . We ignore

the bias term without loss of generality.

Definition 3 (GnnExp). Given a GNN 𝑓 , GnnExp is to represent 𝑓

as a linearized GNN by replacing all (nonlinear) activation functions

in 𝑓 with the identity function and deriving a variant 𝑓 ′ that is at
least as expressive as 𝑓 but contains no parameters in P.

GnnExp represents the characteristic of a GNN as a linear fea-
ture propagator function P, which transforms raw features X by

Table 1: GnnExp encompasses popular GNNs. The * and **

superscripts mark fully and partially linearized models, re-

spectively.We derive Pain Points (Sec. 3.1) andDistinguishing

Factors (Sec. 3.2) of the variants through GnnExp.

Model Type Propagator function P(A,X)
LR Linear X

SGC Linear Ã𝐾sym X
DGC Linear [(1 −𝑇 /𝐾)I + (𝑇 /𝐾)Ãsym]𝐾 X
S2GC Linear

∑𝐾
𝑘=1 (𝛼I + (1 − 𝛼)Ã𝑘sym)X

G2CN Linear ∥𝑁𝑖=1 [I − (𝑇𝑖/𝐾) ((𝑏𝑖 − 1)I + Asym)2]𝐾 X

PPNP* Decoupled (I − (1 − 𝛼)Ãsym)−1 X
APPNP* Decoupled [∑𝐾−1

𝑘=0 𝛼 (1 − 𝛼)
𝑘 Ã𝑘sym + (1 − 𝛼)𝐾 Ã𝐾sym] X

GDC* Decoupled S = sparse𝜖 (
∑∞
𝑘=0 (1 − 𝛼)

𝑘 Ã𝑘sym) for S̃sym X
GPR-GNN* Decoupled ∥𝐾

𝑘=0 Ã
𝑘
sym X

ChebNet* Coupled ∥𝐾−1
𝑘=0 A𝑘sym X

GCN* Coupled Ã𝐾sym X
SAGE* Coupled ∥𝐾

𝑘=0 A
𝑘
row X

GCNII* Coupled ∥𝐾−2
𝑘=0 Ã𝑘symX ∥ ((1 − 𝛼)Ã𝐾sym + 𝛼Ã𝐾−1

sym)X
H2GCN* Coupled ∥2𝐾

𝑘=0 A
𝑘
symX

GAT** Attention
∏𝐾
𝑘=1 [diag(Xw𝑘,1)Ã + Ãdiag(Xw𝑘,2)] X

DA-GNN** Attention
∑𝐾
𝑘=0 diag(Ã

𝑘
symXw)Ã𝑘sym X

utilizing the graph structureA. Lemma 1 shows that GnnExp gener-
alizes existing linear GNNs. Logistic regression is also represented
by GnnExp with the identity propagator P(A,X) = X.

Lemma 1. GnnExp includes existing linear graph neural networks

as its special cases: SGC, DGC, S
2
GC, and G

2
CN.

Proof. The proof is given in Appendix A.1. ■

In Table 1, we conduct a comprehensive linearization of existing
GNNs using GnnExp to understand the fundamental similarities
and differences among GNN variants. The models are categorized
into linear, decoupled, coupled, and attention models. We ignore
bias terms for simplicity, without loss of generality. Refer to Ap-
pendix B for details of the linearization process for each model.

3.1 Pain Points of Existing GNNs

Based on the comprehensive linearization in Table 1, we derive four
pain points of existing GNNs which we address in Section 4.

Pain Point 1 (Lack of robustness). All models in Table 1 fail to

handle multiple graph scenarios at the same time, i.e., graphs with

homophily, heterophily, no network effects, or useless features.

Most models in Table 1 make an implicit assumption on given
graphs, such as homophily or heterophily, rather than being able to
performwell in multiple scenarios at the same time. For example, all
models except ChebNet, SAGE, and H2GCN have self-loops in the
new adjacency matrix, emphasizing the local neighborhood of each
node even in graphs with heterophily or no network effects. This
is the pain point that we also observe empirically from the sanity
checks (in Table 2), where none of the existing models succeeds in
making reasonable accuracy in all cases of synthetic graphs.

Pain Point 2 (Vulnerability to noisy features). All models in Table 1

cannot fully exploit the graph structure if the features are noisy, since

they depend on the node feature matrix X.

3130

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

If a graph does not have a feature matrixX, a common solution is
to introduce one-hot features [14], i.e., X = I, although it increases
the running time of the model a lot. On the other hand, if X exists
but some of its elements are meaningless with respect to the target
classes, models whose propagator functions rely on X suffer from
the noisy elements. In such cases, a desirable property for a model is
to adaptively emphasize important features or disregard noisy ones
to maximize its generalization performance, which is not satisfied
by any of the existing models in Table 1.

Pain Point 3 (Efficiency and effectiveness). Concatenation-based

models in Table 1 create spurious correlations between feature ele-

ments, requiring more parameters than in other models.

Existing models such as GPR-GNN, SAGE, and GCNII in Table 1
perform the concatenation of multiple feature matrices transformed
in different ways. For example, GPR-GNN concatenates Ã𝑘symX for
different values of 𝑘 from 0 to𝐾 , where𝐾 is a hyperparameter. Such
a concatenation-based propagation limits the efficiency of a model
in two ways. First, this increases the number of parameters 𝐾 times,
since the model needs to learn a separate weight matrix for each
given feature matrix. Second, this creates spurious correlations in
the resulting features, since the feature matrices like ÃsymX and
Ã2
symX have high correlations with each other.

Pain Point 4 (Many hyperparameters). Hyperparameters in P
impair its interpretability and require extensive tuning.

Most models in Table 1, even the linear models such as DGC and
G2CN, contain many hyperparameters in the propagator function
P. Such hyperparameters lead to two limitations. First, the inter-
pretability of the weight matrixW is impaired, since it is learned
on top of the transformed feature P(A,X) whose meaning changes
arbitrarily by the choice of its hyperparameters. For example, DGC
changes the number 𝐾 of propagation steps between 250 and 900 in
real-world datasets, making it hard to have consistent observations
from the generated features. Second, P(A,X) should be computed
for every new choice of hyperparameters, while it can be cached
and reused for searching hyperparameters outside P.

3.2 Distinguishing Factors

What potential choices do we have in designing a general approach
that addresses the pain points? We analyze the fundamental simi-
larities and differences among the GNN variants in Table 1.

Distinguishing Factor 1 (Combination of features). How should

we combine node features, the immediate neighbors’ features, and the

𝐾-step-away neighbors’ features?

GNNs propagate information by multiplying the feature X with
(a variant of) the adjacency matrix A multiple times. There are two
main choices in Table 1: (1) the summation of transformed features
(most models), and (2) the concatenation of features (GPR-GNN,
GraphSAGE, GCNII, and H2GCN). Simple approaches like SGC are
categorized as the summation due to the self-loops in Ãsym.

Distinguishing Factor 2 (Modification of A). How should we

normalize or modify the adjacency matrix A?

The three prevailing choices are given as follows: (1) symmet-
ric vs. row normalization, (2) the strength of self-loops, including

making zero self-loops, and (3) static vs. dynamic adjustment based
on the given features. Most models use the symmetric normaliza-
tion Ãsym with self-loops, but some variants avoid self-loops and
use either row normalization Arow or symmetric one Asym. Recent
models such as DGC, G2CN, and GCNII determine the weight of
self-loops with hyperparameters, since strong self-loops allow dis-
tant propagation with a large value of 𝐾 . Finally, attention-based
models learn the elements in A dynamically based on node features,
making propagator functions quadratic with X, not linear.

Distinguishing Factor 3 (Heterophily). What to do if the direct

neighbors differ in their features or labels?

In such cases, the simple aggregation of the features of immediate
neighbors may hurt performance, and therefore, several GNNs
do suffer under heterophily as shown in Table 2. GNNs that can
handle heterophily adopt one or more of these ideas: (1) using the
square of A as the base structure (G2CN); (2) learning different
weights for different steps (GPR-GNN, ChebNet, SAGE, and GCNII),
and (3) making small or no self-loops in the modification of A
(DGC, S2GC, G2CN, and H2GCN). The idea is to avoid or downplay
the effect of immediate (and odd-step-away) neighbors. Self-loops
hurt under heterophily, as they force to have information of all
intermediate neighbors by acting as the implicit summation of
transformed features.

4 PROPOSED METHOD: SLIMG

We propose SlimG, a novel method that addresses the limitations
of existing models with strict adherence to the careful simplicity

principle. We first derive four design decisions (D1-D4) that directly
address the pain points (PPs) of existing GNN models and propose
the following propagator function of SlimG:

P(A,X) = U︸︷︷︸
Structure

∥ 𝑔(X)︸︷︷︸
Features

∥ 𝑔(A2
rowX)︸ ︷︷ ︸

2-step neighbors

∥ 𝑔(Ã2
symX)︸ ︷︷ ︸

Neighbors

(3)

where𝑔(·) is the principal component analysis (PCA) for the orthog-
onalization of each component, followed by an L2 normalization,
and U ∈ R𝑛×𝑟 contains 𝑟 -dimensional structural features indepen-
dent of node features X, derived by running the low-rank singular
value decomposition (SVD) on the adjacency matrix A.

D1: Concatenating winning normalizations (for PP 1 - robustness).

The main principle of SlimG to acquire robustness and generaliz-
ability, in response to Pain Point 1, is to transform the raw features
into various forms and then combine them through concatenation.
In this way, SlimG is able to emphasize essential features or ignore
useless ones by learning separate weights for different components.
The four components of SlimG in Equation 3 show their strength in
different cases: structural features U for graphs with noisy features,
self-features X for a noisy structure, two-step aggregation A2

row for
heterophily graphs, and smoothed two-hop aggregation Ã2

sym of
the local neighborhood for homophily.

Specifically, we use the row-normalized matrixArow with no self-
loops due to the limitations of the symmetric normalization Ãsym:
First, the self-loops force one to combine all intermediate neighbors
of each node until the 𝐾-hop distance, even in heterophily graphs
where the direct neighbors should be avoided. Second, neighboring

3131

Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Structure

Feature

Semantic X Structural X Random X

Homophily A Both help Both help A helps
Heterophily A Both help Both help A helps
Uniform A X helps None helps None helps

(a) Sanity check matrix

0 200 400 600 800 1000

0

200

400

600

800

1000

(b) Homophily A

0 200 400 600 800 1000

0

200

400

600

800

1000

(c) Heterophily A

0 200 400 600 800 1000

0

200

400

600

800

1000

(d) Uniform A

Figure 4: Illustration of our sanity checks. (a) We consider 3

possibilities for each of A and X, creating a total of 9 cases. (b

- d) We visualize the adjacency matrices from the three cases

of A, which exhibit different structural patterns.

features are rescaled based on the node degrees during an aggrega-
tion, even when we want simple aggregation of 𝐾-hop neighbors
preserving the original scale of features. We thus use A2

row along
with the popular transformation Ã2

sym in SlimG.

D2: Structural features (for PP 2 - noisy features). In response to
Pain Point 2, we have to resort to the structure A ignoring X when
features are missing, noisy, or useless for classification. Thanks to
our design decision (D1) for concatenating different components,
we can safely add toP structure-based features which themodel can
utilize adaptively based on the amount of information X provides.
However, it is not effective to use raw A, which requires the model
to learn a separate weight vector for each node, severely limiting
its generalizability. We thus adopt low-rank SVD with rank 𝑟 to
extract structural features U. The value of 𝑟 is selected to keep 90%
of the energy of A, where the sum of the largest 𝑟 squared singular
values divided by the squared Frobenius norm of A is smaller than
0.9. If the chosen value of 𝑟 is larger than 𝑑 in large graphs, we set
𝑟 to 𝑑 for the size consistency between different components.

D3: Orthogonalization and sparsification (for PP 3 - collinearity).

To improve the efficiency and effectiveness of SlimG in response to
Pain Point 3, we use two reliable methods to further transform the
features: dimensionality reduction by PCA and regularization by
group LASSO. First, we run PCA on each of the four components
to orthogonalize them and to improve the consistency of learned
weights. Second, we use group LASSO to learn sparse weights on
the component level, preserving the relative magnitude of each
element and suppressing noisy features. To assure the consistency
between components (especially with the structural features U), we
force all components to have the same dimensionality by selecting
𝑟 features from each component when adopting PCA.

D4: Multi-level neighborhood aggregation (for PP 4 - hyperparam-

eters). Our propagator functionP considersmultiple levels of neigh-
borhoods through the concatenation of different components. This
allows us to remove all hyperparameters from P to tune for each

dataset, in response to Pain Point 4, gaining in both interpretabil-
ity and efficiency. Specifically, X, Ã2

sym, and A2
row aggregate the

zero-, one-, and two-hop neighborhood of each node, respectively,
considering the self-loops included in Ã2

sym. Then, U considers the
global topology information of each node, which is in effect the
same as considering the distant neighborhood in the graph. As a
result, SlimG performs well in different real-world datasets without
tuning any hyperparameters in P, unlike existing GNNs that are
often required to increase the value of 𝐾 up to hundreds [32].

Time complexity. The time complexity of SlimG, including all
its components SVD, PCA, and the training of LR, is linear with a
graph size in most real-world graphs where the number of edges is
much larger than the numbers of nodes and features.

Lemma 2. Given a graph, let 𝑛 and 𝑒 be the numbers of nodes and

edges, respectively, and 𝑑 be the number of features. Then, the time

complexity of the training of SlimG is 𝑂 (𝑑𝑒 + 𝑑2𝑛 + 𝑑3).

Proof. The proof is given in Appendix A.2. ■

5 PROPOSED SANITY CHECKS

We propose a set of sanity checks to directly evaluate the robustness
of GNNs to various scenarios of node classification.

5.1 Design of Sanity Checks

We categorize possible scenarios of node classification based on the
characteristics of node features X, a graph structure A, and node
labels y. We denote by 𝐴𝑖 𝑗 and 𝑌𝑖 the random variables for edge
(𝑖, 𝑗) between nodes 𝑖 and 𝑗 and label 𝑦𝑖 of node 𝑖 , respectively. We
summarize the nine possible cases in Figure 4a.

Structure. We consider three cases of the structure A: uniform,
homophily, and heterophily, which are defined as follows:

• Uniform: 𝑃 (𝑌𝑖 = 𝑦 | 𝐴𝑖 𝑗 = 1, 𝑌𝑗 = 𝑦) = 𝑃 (𝑌𝑖 = 𝑦)
• Homophily: 𝑃 (𝑌𝑖 = 𝑦 | 𝐴𝑖 𝑗 = 1, 𝑌𝑗 = 𝑦) > 𝑃 (𝑌𝑖 = 𝑦)
• Heterophily: 𝑃 (𝑌𝑖 = 𝑦 | 𝐴𝑖 𝑗 = 1, 𝑌𝑗 = 𝑦) < 𝑃 (𝑌𝑖 = 𝑦)

The uniform case means that the label of a node is independent of
the labels of its neighbors. This is the case when the graph structure
provides no information for classification. In the homophily case,
adjacent nodes are likely to have the same label, which is the most
common assumption in graph data. In the heterophily case, adjacent
nodes are likely to have different labels, which is not as common
as homophily but often observed in real-world graphs.

We assume the one-to-one correspondence between the struc-
tural property and the labels: uniform with uniformly random A,
homophily with block-diagonal A, and heterophily with non-block-
diagonal A. Note that the other combinations, e.g., homophily with
non-block-diagonal A, or uniform with block-diagonal A, are not
feasible by definition. Figure 4 illustrates the three cases of A. The
number of node clusters in the graph, which is four in the figure, is
the same as the number of node labels in experiments.

Features.We consider three cases of node features X: random,
semantic, and structural. The three cases are defined in relation to
A and y. We use the notation 𝑝 (·) since the features are typically
modeled as continuous variables:

• Random: 𝑝 (x𝑖 , x𝑗 | 𝑦𝑖 , 𝑦 𝑗 , 𝑎𝑖 𝑗) = 𝑝 (x𝑖 , x𝑗)
• Structural: 𝑝 (x𝑖 , x𝑗 | 𝑦𝑖 , 𝑦 𝑗 , 𝑎𝑖 𝑗) ≠ 𝑝 (x𝑖 , x𝑗 | 𝑦𝑖 , 𝑦 𝑗)
• Semantic: 𝑝 (x𝑖 , x𝑗 | 𝑦𝑖 , 𝑦 𝑗 , 𝑎𝑖 𝑗) ≠ 𝑝 (x𝑖 , x𝑗 | 𝑎𝑖 𝑗)

3132

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

Table 2: SlimG wins on all sanity checks. Each value denotes the average and the standard deviation of accuracy from five runs.

There are three groups of scenarios: (left) only features X help; (middle) only connectivity A helps; (right) both help. Green (,

,) marks the top three (higher is darker); red () marks the ones that are too low (2𝜎 below the third place). SlimG is the

only method without red cells and achieves the best average accuracy and average rank (variance in the parentheses).

Model

Only X helps Only A helps Both X and A help
Avg. Acc Avg. RankSemantic X Random X Random X Structural X Structural X Semantic X Semantic X

Uniform A Homophily Heterophily Homophily Heterophily Homophily Heterophily

LR 83.7±0.6 24.2±0.7 24.2±0.7 71.4±0.9 66.8±2.2 83.4±0.6 83.4±0.6 62.4 (26.9) 10.7 (5.4)

Reg. Kernel 82.7±0.5 27.9±0.4 24.3±1.0 75.7±0.2 65.3±1.6 91.5±0.5 79.5±0.3 63.8 (27.0) 10.4 (4.3)
Diff. Kernel 26.8±1.7 38.0±8.7 37.6±7.5 79.5±0.3 73.5±0.6 70.9±23. 56.1±27. 54.6 (20.7) 10.6 (4.0)
RW Kernel 72.2±0.7 37.0±0.4 24.5±1.3 81.3±1.2 51.0±1.1 94.5±0.9 57.8±0.7 59.8 (24.7) 10.4 (3.6)

SGC 44.6±9.8 64.3±0.7 50.2±14. 87.1±0.6 84.3±0.5 93.9±0.9 91.5±0.5 73.7 (20.4) 5.7 (3.1)
DGC 63.8±1.0 50.5±13. 26.0±0.9 88.6±1.0 45.3±1.3 96.2±0.4 54.0±0.6 60.6 (24.6) 8.3 (5.9)
S2GC 79.9±0.6 38.5±12. 25.4±0.9 88.4±1.0 67.9±1.5 95.9±0.6 78.0±0.5 67.7 (26.2) 7.4 (3.4)
G2CN 25.2±0.3 24.2±1.1 25.0±0.1 88.5±1.0 88.6±1.2 24.3±1.1 50.7±31. 46.6 (30.2) 11.6 (6.3)

GCN 36.3±3.5 46.7±8.0 43.7±1.9 83.3±1.3 72.2±1.7 91.2±1.2 80.3±3.9 64.8 (22.1) 8.1 (3.0)
SAGE 80.3±1.1 31.1±0.7 34.6±2.1 83.9±0.8 81.3±0.7 94.4±0.5 94.4±0.9 71.4 (27.0) 5.7 (2.9)
GCNII 73.5±1.2 30.7±0.7 27.1±1.3 84.2±0.8 69.0±1.4 90.6±0.9 80.4±1.2 65.1 (25.7) 8.7 (1.8)
H2GCN 80.2±1.5 27.0±1.0 27.5±0.8 78.0±0.9 74.6±1.3 91.9±0.7 92.2±0.9 67.3 (28.2) 8.0 (3.9)
APPNP 66.0±2.6 30.3±1.2 25.2±0.7 71.2±4.9 43.8±2.0 83.2±3.8 58.7±4.5 54.1 (21.6) 12.9 (2.0)
GPR-GNN 73.4±0.4 74.6±0.7 65.9±2.1 89.9±0.6 87.6±1.2 95.0±1.1 91.9±1.1 82.6 (11.2) 3.3 (2.1)
GAT 32.7±5.5 42.6±4.8 36.8±5.7 64.0±5.7 55.6±6.8 68.5±7.1 67.0±12. 52.5 (15.0) 11.6 (4.1)

SlimG (Ours) 81.0±1.1 87.1±1.4 89.2±1.2 88.1±0.5 88.9±0.7 94.4±0.6 93.9±0.5 88.9 (4.5) 2.6 (1.8)

The random case means that each feature element 𝑥𝑖 𝑗 is deter-
mined independently of all other variables in the graph, providing
no useful information. The semantic case represents a typical graph
where X provides useful information of y. In this case, the feature
x𝑖 of each node 𝑖 is directly correlated with the label 𝑦𝑖 . In the struc-
tural case, X provides information of the graph structure, rather
than the labels. Thus, X is meaningful for classification if A is not
uniform, as it gives only indirect information of y.

5.2 Observations from Sanity Checks

Table 2 shows the results of sanity checks for our SlimG and all
baseline models whose details are given in Section 6.1. We assume
4 target classes of nodes, making the accuracy of random guessing
25%. Among the nine cases in Table 4a, we do not report the results
on two cases where the graph does not give any information (i.e.,
“none helps”), since all methods produce similar accuracy.

SlimG wins on all sanity checks, thanks to its careful design for
the robustness to various graph scenarios. Although homophily A
and useful (i.e., not random) X is a common assumption in many
datasets, many nonlinear GNNs show failure (i.e., red cells) in such
cases. This implies that the theoretical expressiveness of a model is
often not aligned with its actual performance even in controlled
testbeds, as we also show in our intuitive example in Figure 3. Only
a few baselines succeed in other scenarios with different A and X,
as we present in the observations below.

Observation 1 (Summary). SlimG wins on all sanity checks with-
out failures (i.e., no red cells). SlimG shows the best average accu-
racy and the average rank compared to 15 competitors.

Observation 2 (No network effects). Only a few models including
S2GC and GraphSAGE perform well in uniform A, where the graph
structure provides no useful information, since they have the raw
X (not multiplied with A) in their propagator functions P.

Observation 3 (Useless features). None of the existing models in
Table 2 succeeds with useless (i.e., random) features X, since their
propagator functions P rely on X in all cases.

Observation 4 (Heterophily graphs). Models that can utilize even-
hop neighbors, such as G2CN, GraphSAGE, and GPR-GNN, succeed
in heterophily graphs either with semantic or structural X.

6 EXPERIMENTS

We conduct experiments on 13 real-world datasets to answer the
following research questions (RQ):
RQ1. Accuracy: How well does SlimG work for semi-supervised

node classification on real-world graphs?
RQ2. Success of simplicity: How does SlimG succeed even with

its simplicity? What if we add nonlinearity to SlimG?
RQ3. Speed and scalability: How fast and scalable is SlimG to

large real-world graphs?
RQ4. Interpretability: How to explain the importance of graph

signals through the learned weights of SlimG?
RQ5. Ablation study: Are all the design decisions of SlimG, such

as two-hop aggregation, effective in real-world graphs?

6.1 Experimental Setup

We introduce our experimental setup including datasets, evaluation
processes, and baselines for node classification.

3133

Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 3: SlimG wins most of the times on 13 real-world datasets (7 homophily and 6 heterophily graphs) against 15 competitors.

We color the best and worst results as green and red, respectively, as in Table 2. SlimG is the only approach that exhibits no

failures (i.e., no red cells) in all datasets. Most competitors cause out-of-memory (OOM) errors on large graphs.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec Avg. Rank

LR 51.5±1.2 52.9±4.5 79.9±0.5 73.9±1.2 79.3±1.5 48.3±1.9 56.4±0.5 24.9±1.7 26.7±1.9 27.8±0.8 63.5±0.5 53.0±0.1 61.3±0.0 11.7 (4.2)

Reg. Kernel 67.8±2.5 62.1±4.4 83.4±1.4 80.3±1.4 87.1±1.2 O.O.M. O.O.M. 29.4±2.6 24.3±2.3 29.6±1.4 O.O.M. O.O.M. O.O.M. 12.2 (3.8)
Diff. Kernel 70.6±1.5 62.7±3.8 82.1±0.4 83.1±1.0 89.8±0.6 O.O.M. O.O.M. 34.5±7.9 28.3±1.5 24.7±0.9 53.5±0.8 O.O.M. O.O.M. 11.8 (2.5)
RW Kernel 72.7±1.7 64.1±3.9 83.1±0.7 84.2±0.7 90.6±0.7 63.2±0.2 74.2±0.0 34.9±3.5 25.0±1.6 26.4±1.1 63.1±0.7 57.6±0.1 59.5±0.0 8.3 (3.3)

SGC 76.2±1.1 65.8±3.9 84.1±0.8 83.7±1.6 90.1±0.9 65.0±3.4 74.6±5.1 38.1±4.5 33.1±1.0 24.6±0.8 64.0±1.1 56.5±0.1 69.8±0.0 6.6 (4.2)
DGC 77.8±1.4 66.1±4.2 84.3±0.6 83.9±0.7 90.4±0.2 65.2±4.0 68.7±13. 37.2±3.7 29.2±1.2 25.2±2.1 62.5±0.4 58.2±0.2 60.7±0.1 6.6 (3.2)
S2GC 78.3±1.5 66.9±4.4 84.3±0.3 83.1±0.8 90.1±0.8 62.0±7.4 58.3±18. 34.9±4.9 27.6±1.8 26.7±1.8 63.1±0.5 58.7±0.1 61.2±0.0 6.6 (2.7)
G2CN 76.6±1.5 64.2±3.3 81.4±0.6 82.8±1.6 88.8±0.5 O.O.M. O.O.M. 40.7±2.9 32.1±1.5 24.3±0.5 O.O.M. O.O.M. O.O.M. 10.5 (4.5)

GCN 76.0±1.2 65.0±2.9 84.3±0.5 85.1±0.9 91.6±0.5 62.8±0.6 O.O.M. 38.5±3.0 31.4±1.8 26.8±0.4 62.9±0.7 57.0±0.1 63.9±0.4 6.3 (2.4)
SAGE 74.6±1.3 63.7±3.6 82.9±0.4 83.8±0.5 90.6±0.5 61.5±0.6 O.O.M. 39.8±4.3 27.0±1.3 27.8±0.9 O.O.M. 56.6±0.4 68.9±0.1 8.5 (3.5)
GCNII 77.8±1.7 63.4±3.0 84.9±0.8 82.3±1.8 90.8±0.6 45.7±0.5 O.O.M. 30.5±2.5 21.9±3.0 29.0±1.3 64.5±0.5 56.9±0.6 62.1±0.3 8.4 (4.6)
H2GCN 77.6±0.9 64.7±3.8 85.4±0.4 49.5±16. 75.8±11. O.O.M. O.O.M. 31.9±2.6 25.0±0.5 28.9±0.6 63.9±0.4 58.7±0.0 O.O.M. 8.9 (4.9)
APPNP 80.0±0.6 67.1±2.8 84.6±0.5 84.2±1.7 92.5±0.3 53.4±1.3 O.O.M. 30.9±4.7 23.9±3.2 26.1±1.0 63.7±0.9 47.3±0.3 57.4±0.4 7.6 (4.8)
GPR-GNN 78.8±1.3 64.2±4.0 85.1±0.7 85.0±1.0 92.6±0.3 58.5±0.8 O.O.M. 31.7±4.7 26.2±1.6 29.5±1.1 64.5±0.4 57.6±0.2 67.6±0.1 5.4 (3.7)
GAT 78.2±1.2 65.8±4.0 83.6±0.2 85.4±1.4 91.7±0.5 58.2±1.0 O.O.M. 39.1±4.1 28.6±0.6 26.4±0.4 60.5±0.8 O.O.M. O.O.M. 7.5 (3.7)

SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1 1.9 (1.5)

Table 4: Dataset statistics. The first 7 datasets are homophily,

and the last 6 are heterophily graphs.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1433 7
CiteSeer 3,327 4,732 3703 6
PubMed 19,717 44,338 500 3
Computers 13,752 245,861 767 10
Photo 7,650 119,081 745 8
ogbn-arXiv 169,343 1,166,243 128 40
ogbn-Products 2,449,029 61,859,140 100 30

Chameleon 2,277 36,101 2325 5
Squirrel 5,201 216,933 2089 5
Actor 7,600 29,926 931 5
Penn94 41,554 1,362,229 4814 2
Twitch 168,114 6,797,557 7 2
Pokec 1,632,803 30,622,564 65 2

Datasets.We use 7 homophily and 6 heterophily graph datasets
in experiments, which were commonly used in previous works on
node classification [4, 21, 23]. Table 4 shows a summary of dataset
information. Cora, CiteSeer, and PubMed [26, 35] are homophily
citation graphs between research articles. Computers and Photo
[27] are homophily Amazon co-purchase graphs between items.
ogbn-arXiv and ogbn-Products are large homophily graphs from
Open Graph Benchmark [10]. Since we use only 2.5% of all labels
as training data, we omit the classes with instances fewer than 100.
Chameleon and Squirrel [24] are heterophilyWikipedia web graphs.
Actor [29] is a heterophily graph connected by the co-occurrence of
actors onWikipedia pages. Penn94 [21, 30] is a heterophily graph of
gender relations in a social network. Twitch [25] and Pokec [18] are
large graphs, which have been relabeled by [21] to be heterophily.
We make the heterophily graphs undirected as done in [4].

Evaluation. We perform semi-supervised node classification
by randomly dividing all nodes in a graph by the 2.5%/2.5%/95%
ratio into training, validation, and test sets. In this setting [4, 6],

which is common in real-world data where labels are often scarce
and expensive, we can properly evaluate the performance of each
method in semi-supervised learning. We perform five runs of each
experiment with different random seeds and report the average and
standard deviation. All hyperparameter searches and early stopping
are done based on validation accuracy for each run.

Competitors and hyperparameters.We include various types
of competitors: linear models (LR, SGC, DGC, S2GC, and G2CN),
coupled nonlinear models (GCN, GraphSAGE, GCNII, and H2GCN),
decoupled models (APPNP and GPR-GNN), and attention-based
models (GAT). We perform row-normalization on the node features
as done in most studies on GNNs. We search their hyperparameters
for every data split through a grid search as described inAppendix D.
The hidden dimension size is set to 64, and the dropout probability is
set to 0.5. For the linear models, we use L-BFGS to train 100 epochs
with the patience of 5. For the nonlinear ones, we use ADAM and
update them for 1000 epochs with the patience of 200.

We also include three graph kernel methods [28], namely Regu-
larized Laplacian, Diffusion Process, and the 𝐾-step Random Walk.
They focus on feature transformation and are used with the LR clas-
sifier as SlimG is. Thus, they perform as the direct competitors of
SlimG that apply different feature transformations. The propagator
functions of graph kernel methods [28] are given as follows:

(Reg. Kernel) P(A,X) = (I𝑛 + 𝜎2L̃)−1X (4)

(Diff. Kernel) P(A,X) = exp(−𝜎2/2L̃)X (5)

(RW Kernel) P(A,X) = (𝑎I𝑛 − L̃)𝑝X, (6)

where L̃ = D−1/2 (D − A)D−1/2 is the normalized Laplacian matrix,
and 𝜎 = 1, 𝑎 = 1, and 𝑝 = 2 are their hyperparameters.

SlimG contains two hyperparameters, which are the weight of
LASSO and the weight of group LASSO. It is worth noting that
SlimG does not need to recompute the features when searching the
hyperparameters, while most of the linear methods need to do so
because of including one or more hyperparameters in P.

3134

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

Table 5: SlimG effectively combines different components. SlimG-C𝑖 represents that we use only the 𝑖-th component shown in

Equation 3. Node classification is done accurately even we use a single component at each time, and SlimG outperforms the

best accuracy of a single component in 11 out of the 13 datasets. Green (,) marks the top two.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

SlimG-C1 46.3±3.0 29.2±2.5 64.5±1.0 77.6±1.0 78.5±0.9 51.4±0.2 73.6±2.9 41.9±2.0 29.1±1.0 21.6±1.2 60.9±0.6 59.3±0.1 66.7±0.0
SlimG-C2 53.5±1.5 53.6±3.6 79.3±0.3 74.5±1.1 81.4±0.9 49.8±0.2 57.4±0.1 25.1±1.5 21.8±0.9 29.9±2.1 62.3±0.5 53.0±0.1 61.1±0.0
SlimG-C3 77.6±0.7 62.7±4.3 77.4±0.8 86.0±1.0 90.3±0.8 66.2±0.2 82.5±0.0 40.6±1.0 27.6±3.2 24.1±1.4 64.7±0.6 53.1±0.1 73.2±0.1
SlimG-C4 76.8±0.9 64.7±3.6 82.1±0.7 85.3±1.2 90.9±0.7 65.3±0.3 78.3±0.1 40.4±2.2 31.6±1.4 23.7±1.4 64.3±0.7 56.3±0.1 68.4±0.2
SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

Table 6: Linearity is enough for SlimG: it outperforms its own variants with nonlinearity that replace the linear classifier or

the PCA function 𝑔 with a nonlinear neural network. Green (,) marks the top two.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

w/ MLP-2 65.9±1.1 54.2±5.3 83.3±0.2 84.8±0.5 90.1±1.9 65.8±0.1 85.7±0.0 40.0±2.5 30.5±0.5 28.8±1.0 66.7±1.7 60.3±0.3 76.5±0.1
w/ MLP-3 66.1±2.0 50.3±3.6 80.9±0.9 85.2±0.8 90.0±0.8 63.0±0.1 84.9±0.9 38.5±5.5 30.9±0.7 28.9±1.2 65.1±0.6 60.3±0.2 76.4±0.2
w/ NL Trans. 70.7±2.3 57.5±5.1 81.0±0.4 71.4±10. 77.9±2.2 57.0±0.6 O.O.M. 41.3±3.2 30.0±1.6 27.6±2.4 61.8±1.6 61.5±0.3 75.7±0.5
SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

6.2 Accuracy (RQ1)

In Table 3, SlimG is compared against 15 competitors on 13 real-
world datasets (7 homophily and 6 heterophily graphs). We color
the best and worst results as green and red, respectively, as in
Table 2. We report the accuracy in Table 3 where , , represent
the top three methods (higher is darker), SlimG outperforms all
competitors in 4 homophily and 5 heterophily graphs, and achieves
competitive accuracy in the rest; SlimG is among the top three in 10
out of 13 times. Moreover, SlimG is the only model that exhibits no
failures (i.e., no red cells), and shows the best average rank with a
significant difference from the second-best. It is notable that many
competitors, even linear models such as the kernel methods and
G2CN, run out of memory in large graphs. This shows that linearity
is not a sufficient condition for efficiency and scalability, and thus a
careful design of the propagator function P is needed as in SlimG.

6.3 Success of Simplicity (RQ2)

We conduct studies to better understand how SlimG exhibits the
superior performance on real-world graphs even with its simplicity.
Tables 5 and 6 demonstrate the strength of simplicity for semi-
supervised node classification in real-world graphs.

Flexibility. Table 5 illustrates the accuracy of SlimG when only
one of its four components in Equation 3 is used at each time. The
accuracy of SlimG with only a single component is higher than
those of most baselines in Table 3 when an appropriate component
is picked for each dataset, e.g., C1 for Twitch, C2 for Actor, C3 for
Cora, and C4 for CiteSeer. This shows that high accuracy in semi-
supervised node classification can be achieved by a well-designed
simple model even without high expressivity. SlimG focuses on the
best component in each dataset effectively, improving the accuracy
of individual components in 11 out of 13 datasets.

Nonlinearity. Many recent works on linear GNNs have shown
that nonlinearity is not an essential component in semi-supervised
node classification [20, 32, 39]. To support the success of SlimG,
we design three nonlinear variants of it:

• w/ MLP-2: We replace LR with a 2-layer MLP.
• w/ MLP-3: We replace LR with a 3-layer MLP.

Table 7: SlimG is scalable. Wemeasure the runtime of SlimG

by varying the numbers of features and edges in a graph.

Number of features 20 40 60 80 100

Time (s) 13.0 16.2 18.6 22.9 27.8

Number of edges 12M 25M 60M 80M 100M

Time (s) 12.3 19.9 21.9 24.0 27.8

• w/ Nonlinear (NL) Transformation: We replace the PCA
function 𝑔(·) as a nonlinear function. Specifically, we adopt
a 2-layer MLP for the first two components and a 2-layer
GCN for the last two components. The transformed features
are concatenated and given to another 2-layer MLP.

We use dropout with a probability of 0.5 to prevent overfitting in
bothMLP andGCN. The nonlinearmodels are trainedwith the same
setting as GCN reported in Table 3. We report the result in Table 8,
showing that adding nonlinearity does not necessarily improve the
accuracy while sacrificing both scalability and interpretability.

6.4 Speed and Scalability (RQ3)

We plot the training time versus the accuracy of each model on
the ogbn-arXiv, ogbn-Products, and Pokec graphs, which are the
largest in our benchmark, in Figure 2. We report the training time
of each model with the hyperparameters that show the highest
validation accuracy. SlimG achieves the highest accuracy in the
ogbn-arXiv and ogbn-Products datasets while being 10.4× and 2.5×
faster than the second-best model, respectively. SlimG also shows
the highest accuracy in the Pokec dataset, while being 18.0× faster
than the best-performing deep model. It is worth noting that SlimG
is even faster than LR in ogbn-arXiv, taking fewer iterations than
in LR during the optimization. Its fast convergence is owing to the
orthogonalization of each component of the features.

Table 7 shows the training time of SlimG in the ogbn-Products
graph with varying numbers of features and edges. Smaller graphs
are created by removing edges uniformly at random. SlimG scales
well with both variables even in large graphs containing up to 61M
edges, showing linear complexity as we claim in Lemma 2.

3135

Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 8: Ablation study - SlimG works best with the current design. Each design decision of SlimG leads to an improvement of

accuracy in real-world graphs; SlimG is among the top two in all datasets, marked as green (,).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

w/o Sp. Reg. 77.8±0.6 65.0±3.5 83.8±0.5 85.9±0.8 91.7±0.7 65.2±0.2 83.4±1.9 40.1±3.8 30.7±1.0 30.1±0.6 67.4±0.6 59.8±0.1 74.2±0.0
w/o PCA 74.8±1.5 66.0±3.1 84.7±0.5 84.4±1.1 90.3±0.7 60.8±0.2 84.5±0.0 41.3±2.0 31.8±1.1 27.3±1.1 67.7±0.7 59.1±0.2 72.8±0.1
w/o Struct. U 78.1±1.0 67.4±2.5 84.4±0.3 86.0±0.5 92.1±0.4 66.1±0.2 82.5±0.6 37.5±4.2 29.8±0.4 31.3±0.5 65.8±0.6 56.8±0.0 72.8±0.1
SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

Table 9: Ablation study - Two-step aggregation is good enough for SlimG. The values 𝑘row and 𝑘sym represent the numbers of

propagation steps for the Arow and Ãsym components in Equation 3, respectively. We observe no consistent improvement of

accuracy by increasing the values of 𝑘row and 𝑘sym, supporting the current design of SlimG. Green (,) marks the top two.

𝑘row 𝑘sym Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

{2, 4, 6} {2, 3, 4} 79.4±1.1 66.0±4.4 84.4±0.4 85.9±0.5 91.3±0.5 67.9±0.2 84.8±2.1 41.0±3.9 31.4±0.6 29.8±0.6 68.2±0.6 60.7±0.1 76.6±0.2
{2, 4} {2, 3} 78.9±0.9 66.9±2.5 84.0±0.5 86.2±0.7 91.5±0.5 67.4±0.1 73.9±23. 41.4±4.0 31.0±0.7 30.4±0.4 68.3±0.5 60.8±0.1 76.0±0.1
6 4 79.2±0.7 66.2±3.4 84.0±0.3 85.2±0.7 91.0±0.8 67.3±0.2 84.7±1.7 38.2±6.3 29.2±1.5 31.2±0.8 67.7±0.7 59.8±0.1 74.2±0.2
4 3 79.2±0.8 66.1±3.5 84.2±0.5 85.8±0.6 91.3±0.4 67.2±0.1 85.4±0.0 38.6±7.1 29.5±1.8 30.4±0.7 67.5±0.6 60.0±0.1 74.6±0.1
2 (ours) 2 (ours) 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

Expected

(a) No network effects (b) Useless features

Figure 5: SlimG is interpretable: it suppresses useless infor-

mation and focuses on informative ones for each scenario: (a)

self-features 𝑔(X) and (b) structural features U. The learned
weights are directly matched with the expectations.

6.5 Interpretability (RQ4)

Figure 5 illustrates the weights learned by the classifier in SlimG
for the sanity checks, where the ground truths are known. SlimG
assigns large weights to the correct factors in graphs with different
mutual information between variables. When there are no network
effects in Figure 5a, it successfully assigns the largest weights to
the self-features 𝑔(X), ignoring all other components. When the
features are useless in Figure 5b, it puts most of the attention on
the structural features U, which does not rely on X.

6.6 Ablation Studies (RQ5)

We run two types of ablation studies to support the main ideas of
SlimG: its design decisions and two-hop aggregation.

Design decisions. In Table 8, we show the accuracy of SlimG
when each of its core ideas is disabled: sparse regularization, PCA,
and the structural features U. SlimG performs best with all of its
ideas enabled; it is always included in the top two in each dataset.
This shows that SlimG is designed effectively with ideas that help
improve its accuracy on real-world datasets. Note that the sparse
regularization and PCA improve the efficiency of SlimG, by reduc-
ing the number of parameters, as well as its accuracy.

Receptive fields. To analyze the effect of changing the receptive
field of SlimG, we vary the distance of aggregation (i.e., the value of
𝐾) in Table 9. The values of 𝑘row or 𝑘sym given as sets, e.g., {2, 4, 6},
represent that we include more than one component to SlimG with
different 𝐾 , increasing the overall complexity of decisions. Since
Arow is designed to consider heterophily relations, we use only the
even values of 𝑘row. Table 9 shows no significant gain in accuracy
by increasing the values of 𝑘row and 𝑘sym, or even including more
components to SlimG; the accuracies of all variants are similar to
each other in all cases. That is, SlimG works sufficiently well even
with the 2-step aggregation for both Arow and Ãsym.

7 CONCLUSION

We propose SlimG, a simple but effective model for semi-supervised
node classification, which is designed by the careful simplicity prin-
ciple. We summarize our contributions as follows:

• C1 - Method: SlimG outperforms state-of-the-art GNNs in
both synthetic and real datasets, showing the best robust-
ness; SlimG succeeds in all types of graphs with homophily,
heterophily, noisy features, etc. SlimG is scalable to million-
scale graphs, even when other baselines run out of memory,
making interpretable decisions from its linearity.

• C2 - Explanation: Our GnnExp framework illuminates the
fundamental similarities and differences of popular GNN
variants (see Table 1), revealing their pain points.

• C3 - Sanity checks: Our sanity checks immediately high-
light the strengths and weaknesses of each GNN method
before it is sent to production (see Table 2).

• C4 - Experiments: Our extensive experiments explain the
success of SlimG in various aspects: linearity, robustness,
receptive fields, and ablation studies (see Tables 3 to 9).

Reproducibility. Our code, along with our datasets for sanity
checks, is available at https://github.com/mengchillee/SlimG.

ACKNOWLEDGMENTS

This work was partially funded by project AIDA (reference POCI-
01-0247-FEDER-045907) under CMU Portugal, and a gift from PNC.

3136

https://github.com/mengchillee/SlimG

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

REFERENCES

[1] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[2] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks?. In ICLR.

[3] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and Deep Graph Convolutional Networks. In ICML.

[4] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In ICLR.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
NIPS.

[6] Kaize Ding, JianlingWang, James Caverlee, andHuan Liu. 2022. Meta Propagation
Networks for Graph Few-shot Semi-supervised Learning. In AAAI. AAAI Press,
6524–6531. https://ojs.aaai.org/index.php/AAAI/article/view/20605

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In ICML.

[8] NathanHalko, Per-GunnarMartinsson, and Joel A. Tropp. 2011. Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions. SIAM Rev. 53, 2 (2011), 217–288.

[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NeurIPS.

[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv preprint arXiv:2005.00687 (2020).

[11] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. 2021.
Combining Label Propagation and Simple Models out-performs Graph Neural
Networks. In ICLR.

[12] Vassilis N. Ioannidis, Meng Ma, Athanasios N. Nikolakopoulos, and Georgios B.
Giannakis. 2017. Kernel-based Inference of Functions over Graphs. CoRR

abs/1711.10353 (2017).
[13] Dongkwan Kim and Alice Oh. 2021. How to Find Your Friendly Neighborhood:

Graph Attention Design with Self-Supervision. In ICLR.
[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[15] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[16] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-
sion Improves Graph Learning. In NeurIPS.

[17] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos,
and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling
Networks. J. Mach. Learn. Res. 11 (2010), 985–1042.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection.

[19] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. 2019. Deep-
GCNs: Can GCNs Go As Deep As CNNs?. In ICCV.

[20] Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. 2022.
G2CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters.
In ICML.

[21] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar
Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learning on Non-Homophilous

Graphs: New Benchmarks and Strong Simple Methods. In NeurIPS.
[22] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural

Networks. In KDD.
[23] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.
[24] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-Scale attributed

node embedding. J. Complex Networks 9, 2 (2021).
[25] Benedek Rozemberczki and Rik Sarkar. 2021. Twitch Gamers: A Dataset for

Evaluating Proximity Preserving and Structural Role-Based Node Mmbeddings.
arXiv preprint arXiv:2101.03091 (2021).

[26] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106.

[27] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. CoRR

abs/1811.05868 (2018).
[28] Alexander J. Smola and Risi Kondor. 2003. Kernels and Regularization on Graphs.

In Computational Learning Theory and Kernel Machines, 16th Annual Conference

on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,

Washington, DC, USA, August 24-27, 2003, Proceedings (Lecture Notes in Computer

Science, Vol. 2777), Bernhard Schölkopf and Manfred K. Warmuth (Eds.). Springer,
144–158.

[29] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in
large-scale networks. In KDD.

[30] Amanda L Traud, Peter J Mucha, and Mason A Porter. 2012. Social Structure of
Facebook Networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165–4180.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[32] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting
the diffusion process in linear graph convolutional networks. NeurIPS (2021).

[33] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
ICML.

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24.

[35] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-Supervised Learning with Graph Embeddings. In ICML.

[36] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD.

[37] Jaemin Yoo, Hyunsik Jeon, and U Kang. 2019. Belief Propagation Network for
Hard Inductive Semi-Supervised Learning. In IJCAI.

[38] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[39] Hao Zhu and Piotr Koniusz. 2021. Simple Spectral Graph Convolution. In ICLR.
[40] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs. In NeurIPS.

3137

https://ojs.aaai.org/index.php/AAAI/article/view/20605

Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A PROOFS OF LEMMAS

A.1 Proof of Lemma 1

Proof. We prove the lemma for each of SGC, DGC, S2GC, and
G2CN. The propagator function of SGC [33] directly fits the defini-
tion of linearization. DGC [32] has variants DGC-Euler and DGC-
DK. We focus on DGC-Euler, which is mainly used in their exper-
iments. Then, DGC also fits the definition of linearization. S2GC
[39] computes the summation of features propagated with differ-
ent numbers of steps. The original formulation divides the added
features by 𝐾 , which is safely ignored as we multiply the weight
matrix W to the transformed feature for classification.

G2CN [20] does not provide an explicit formulation of the prop-
agator function. The parameterized version P′ of the propagator
function is P′ (A,X; {𝜃𝑖 }𝑁𝑖=1) =

∑𝑁
𝑖=1 𝜃𝑖H𝑖,𝐾 , where 𝜃𝑖 is a parame-

ter. The 𝑘-th feature representation H𝑖,𝑘 is recursively defined as
H𝑖,𝑘 = [I − 𝑇𝑖

𝐾
((𝑏𝑖 − 1)I + Asym)2]H𝑖,𝑘−1, where L = I−Asym is the

normalized Laplacian matrix, 𝑁 , 𝑇𝑖 , and 𝑏𝑖 are hyperparameters,
and H𝑖,0 = X. Then, we make it contain no learnable parameters as
P(A,X) = ∥𝑁𝑖=1 H𝑖,𝐾 . We prove the lemma from the four cases. ■

A.2 Proof of Lemma 2

Proof. The training of SlimG consists of three parts: SVD, PCA,
and LR. The time complexity of SVD is 𝑂 (𝑑𝑒 + 𝑑2𝑛) as SlimG runs
the sparse truncated SVD for generating structural features. The
complexity of PCA, which is applied to each of the four components
in Equation 3, is𝑂 (𝑑2𝑛 +𝑑3). The complexity of the gradient-based
optimization of LR is 𝑂 (𝑑𝑛𝑡), where 𝑡 is the number of epochs. We
safely assume 𝑡 < 𝑛, since 𝑡 < 100 in all our experiments. We prove
the lemma by combining the three complexity terms. ■

B LINEARIZATION PROCESSES

B.1 Linearization of Decoupled GNNs

Lemma 3. PPNP [15] is linearized by GnnExp as

P(A,X) = (I𝑛 − (1 − 𝛼)Ãsym)−1X, (7)

where 0 < 𝛼 < 1 controls the weight of self-loops.
Proof. The proof is straightforward, since the authors present a

closed-form representation of the propagator function. We remove
the activation function from the original representation. ■

Lemma 4. APPNP [15] is linearized by GnnExp as

P(A,X) =
[∑𝐾−1

𝑘=0 𝛼 (1 − 𝛼)
𝑘 Ã𝑘sym + (1 − 𝛼)𝐾 Ã𝐾sym

]
X, (8)

where 0 < 𝛼 < 1 controls the weight of self-loops.
Proof. We assume that the initial node representation is cre-

ated by a single linear layer, i.e., XW. Then, the 𝑘-th representation
matrix H𝑘 is represented as H𝑘 = (1−𝛼)ÃsymH𝑘−1 +𝛼XW, where
0 < 𝛼 < 1 is a hyperparameter. We derive the closed-form repre-
sentation of H𝐾 and remove redundant parameters. ■

Lemma 5. GDC [16] is linearized by GnnExp as

P(A,X) = S̃′sym ⊙ 1(S̃′sym ≥ 𝜖), (9)

where S =
∑∞
𝑘=0 𝛼 (1− 𝛼)

𝑘 Ã𝑘sym, ⊙ is the elementwise multiplication,

1 is a matrix that contains one if each element holds the condition

and zero if otherwise, and 𝛼 and 𝜖 are hyperparameters.

Proof. GDC presents various forms of propagation functions
by generalizing APPNP. We pick the most representative one given
in the paper, which is directly related to APPNP. The unnormalized
version of the propagation matrix is S′ =

∑∞
𝑘=0 𝛼 (1 − 𝛼)𝑘 Ã𝑘sym,

which is then normalized and sparsified as S = sparsify(S̃′sym). The
matrix S̃′sym represents adding self-loops and applying the symmet-
ric normalization to S′. The paper gives two approaches for spar-
sification, which are a) removing elements smaller than 𝜖 , which
is a hyperparameter, and b) selecting the top 𝑘 neighbors for each
node. We take the first approach, which is easier to represent in a
closed form, getting Equation 9. ■

Lemma 6. GPR-GNN [4] is linearized by GnnExp as

P(A,X) = ∥𝐾
𝑘=0Ã

𝑘
symX. (10)

Proof. We assume that the initial node representation is created
by a single linear layer, i.e., XW. Then, we replace the summation
in the original propagator function with concatenation to remove
the learnable parameters, getting Equation 10. ■

B.2 Linearization of Coupled GNNs

Lemma 7. ChebNet [5] is linearized by GnnExp as

P(A,X) = ∥𝐾−1
𝑘=0 A

𝑘
symX. (11)

Proof. Let H𝑘 be the 𝑘-th node representation matrix, and
L = I − Asym be the graph Laplacian matrix normalized symmetri-
cally. Then, the propagator function of ChebNet with parameters 𝜃
is P′ (A,X;𝜃) = ∑𝐾−1

𝑘=0 𝜃𝑘H𝑘 where H𝑘 = 𝑎𝑘A𝑘symX+𝑎𝑘−1A𝑘−1symX+
· · · + 𝑎0X, and 𝑎0, · · · , 𝑎𝑘 are constants. Since we have 𝐾 free pa-
rameters 𝜃0, · · · , 𝜃𝐾 , we safely rewrite the propagator function as
P′ (A,X;𝜃) = ∑𝐾−1

𝑘=0 𝜃𝑘A
𝑘
symX. We remove the parameters by re-

placing the summation with concatenation. ■

Lemma 8. GraphSAGE [9] is linearized by GnnExp as

P(A,X) = ∥𝐾
𝑘=0A

𝑘
rowX. (12)

Proof. We assume the mean aggregator of GraphSAGE among
various choices. By removing the activation function, each layer
of GraphSAGE is linearized as F (X) = XW1 + ArowXW2, where
Arow = D−1A represents the mean operator in the aggregation,
andW1 andW2 are learnable weight matrices. If we stack 𝐾 layers
with reparametrization, we get F𝐾 (X) = ∑𝐾

𝑘=1 A
𝑘
rowXW𝑘 . Note

that a different weight matrixW𝑘 is applied to each layer 𝑘 . This is
equivalent to concatenating the transformed features of all layers
and learning a single large weight matrix in training. ■

Lemma 9. GCNII [3] is linearized by GnnExp as

P(A,X) = ∥𝐾−2
𝑘=0 Ã

𝑘
symX ∥ ((1 − 𝛼)Ã𝐾sym + 𝛼Ã𝐾−1

sym)X, (13)

where 𝛼 is a hyperparameter.

Proof. After removing the activation function, the 𝑙-th layer F𝑙
of GCNII is F𝑙 (H) = ((1 − 𝛼𝑙)ÃsymH + 𝛼𝑙X)) ((1 − 𝛽𝑙)I + 𝛽𝑙W𝑙),
where 𝛼𝑙 and 𝛽𝑙 are hyperparameters, andW𝑙 is a weight matrix.
The second term is equivalent toW𝑙 regardless of the value of 𝛽𝑙 ,
sinceW𝑙 is a free parameter. We also set 𝛼𝑙 to a constant 𝛼 which is
the same for every layer 𝑙 , following the original paper [3].1 Then,
the equation is simplified as F𝑙 (H) = ((1−𝛼)ÃsymH+𝛼X)W𝑙 . The
1𝛼 is set to 0.1 in the original paper of GCNII [3].

3138

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jaemin Yoo, Meng-Chieh Lee, Shubhranshu Shekhar, and Christos Faloutsos

Table 10: Search space of hyperparameters.

Method Hyperparameters

LR 𝑤𝑑 = [0, 5𝑒−4]
SGC 𝑤𝑑 = [0, 5𝑒−4], 𝐾 = 2
DGC 𝑤𝑑 = [0, 5𝑒−4], 𝐾 = 200,𝑇 = [3, 4, 5, 6]
S2GC 𝑤𝑑 = [0, 5𝑒−4], 𝐾 = 16, 𝛼 = [0.01, 0.03, 0.05, 0.07, 0.09]
G2CN 𝑤𝑑 = [0, 5𝑒−4], 𝐾 = 100, 𝑁 = 2,𝑇1 = 𝑇2 = [10, 20, 30, 40], 𝑏1 = 0, 𝑏2 = 2

GCN 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = 2
SAGE 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = 2
GCNII 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = 0.01, 𝐾 = [8, 16, 32, 64], 𝛼 = [0.1, 0.2, 0.5], 𝜃 = [0.5, 1, 1.5]
H2GCN 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = [1, 2]
APPNP 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = 10, 𝛼 = 0.1
GPR-GNN 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = 10, 𝛼 = [0.1, 0.2, 0.5, 0.9]
GAT 𝑤𝑑 = [0, 5𝑒−4], 𝑙𝑟 = [2𝑒−3, 0.01, 0.05], 𝐾 = 2, ℎ𝑒𝑎𝑑𝑠 = 8

SlimG 𝑤𝑑1 = [1𝑒−3, 1𝑒−4, 1𝑒−5],𝑤𝑑2 = [1𝑒−3, 1𝑒−4, 1𝑒−5, 1𝑒−6]

closed-form representation is F𝐾 (X) = (1 − 𝛼)𝐾−1 ((1 − 𝛼)Ã𝐾sym +
𝛼Ã𝐾−1

sym)XW𝐾 + 𝛼 ∑𝐾−2
𝑘=0 (1 − 𝛼)𝑘 Ã𝑘symXW𝑘 . We safely remove the

constants that can be included in the weight matrices, and replace
the summation with concatenation. ■

Lemma 10. H2GCN [40] is linearized by GnnExp as

P(A,X) = ∥2𝐾
𝑘=0A

𝑘
symX. (14)

Proof. H2GCN concatenates the features generated from every
layer, each of which also concatenates the features averaged for the
one- and two-hop neighbors from the previous layer. The self-loops
are not added to A during the propagations. ■

B.3 Partial Linearization of Attention GNNs

Lemma 11. DA-GNN [22] is partially linearized by GnnExp as

P(A,X) = ∑𝐾
𝑘=0diag(Ã

𝑘
symXw)Ã𝑘symX. (15)

where diag(·) is a function that generates a diagonal matrix from a

vector, and w is a learnable parameter.

Proof. DA-GNN has separate feature transformation and propa-
gation steps as in the decoupled models. We assume that the initial
node representation is created by a single linear layer, i.e., XW.
Then, the 𝑘-th representation matrix is H𝑘 = Ã𝑘symXW. DA-GNN
computes the weighted sum of representations for all 𝑘 ∈ [0, 𝐾],
where the weight values are determined also from the representa-
tion matrices: P(A,X) = ∑𝐾

𝑘=0 diag(H𝑘 s)H𝑘 , where s is a learnable
weight vector. Lastly, we remove the redundant parameters. ■

Lemma 12. GAT [31] is partially linearized by GnnExp as

P(A,X) = ∏𝐾
𝑘=1

[
diag(Xw𝑘,1)Ã + Ãdiag(Xw𝑘,2)

]
X, (16)

where w𝑘,1 and w𝑘,2 are learnable weight vectors.

Proof. We apply the following changes to linearize GAT, whose
linearization is not straightforward due to the nonlinearity in the
attention function: (a) We simplify the attention function, removing
the exponential and normalization: 𝛼𝑖 𝑗 = exp(𝑒𝑖 𝑗)/

∑
𝑘 exp(𝑒𝑖𝑘) ≈

𝑒𝑖 𝑗 . (b) We remove LeaklyReLU in the computation of 𝑒𝑖 𝑗 . (c) We
assume the single-head attention. Then, the edge weight 𝑒𝑖 𝑗 , which

is the (𝑖, 𝑗)-th element of the propagator matrix, is defined as 𝑒𝑖 𝑗 =
a⊤dst (W

⊤x𝑖) + a⊤src (W⊤x𝑗), where x𝑖 and x𝑗 are feature vectors of
length 𝑑 for node 𝑖 and 𝑗 , respectively, W is a 𝑑 × 𝑐 weight matrix,
and adst and asrc are learnable weight vectors of length 𝑐 .

We derive the initial form of a linearized GAT layer as H =

[diag(XWadst)Ã + Ãdiag(XWasrc)]XW. Since all adst, asrc, and
W are free parameters, we generalize it as H = [diag(Xwdst)Ã +
Ãdiag(Xwsrc)]XW, where wdst and wsrc are learnable vectors that
replace adst and asrc, respectively. Then, we get Equation 16. ■

C IMPLEMENTATION OF SANITY CHECKS

There exist various ways to generate synthetic graphs satisfying
the requirements of our sanity checks [1, 17]. However, we choose
the simplest approach to focus on the mutual information between
variables, rather than other characteristics of real-world graphs.

Structure.We assume that the number of node clusters is the
same as the number 𝑐 of labels. We divide all nodes into 𝑐 groups
and then decide the edge densities for intra- and inter-connections
of groups based on the type: uniform, homophily, and heterophily.
The expected number of edges is the same for all three cases.

A notable characteristic of a heterophily structure A is that A2

follows homophily. If we create inter-group connections for all pairs
of different groups, it creates noisyA2 with inter-group connections.
For consistency, we set the number of classes to an even number in
our experiments, randomly pick paired classes such as (1, 3) and
(2, 4) when 𝑐 = 4, for example, and create inter-group connections
only for the chosen pairs. In this way, we create a non-diagonal
block-permutation matrix A, as shown in Figure 4c.

Features. We assume that every feature element 𝑥𝑖 𝑗 is basically
sampled from a uniform distribution. In the random case, we sample
each element from the distribution U(0, 1) between 0 and 1. In the
structural case, we run the low-rank support vector decomposition
(SVD) [8] to make X have structural information. Given UΣV⊤ ≈ A
from the low-rank SVD, we take U and normalize each column to
have the zero-mean and unit-variance. The rank 𝑟 in the SVD is a
hyperparameter; higher 𝑟 captures the structure better but can give
noisy information. We also apply ReLU to make U positive.

In the semantic case, we randomly pick 𝑐 representative vectors
{v𝑘 }𝑐𝑘=1 from the uniform distribution, which correspond to the
𝑐 different classes. Then, for each node 𝑖 with label 𝑦, we sample
a feature vector x𝑖 such that argmax𝑘 x⊤𝑖 v𝑘 = 𝑦. In this way, we
have random vectors that have sufficient semantic information for
the classification of labels, with a guarantee that the perfect linear
decision boundaries can be drawn in the feature space X.

D HYPERPARAMETERS

Table 10 summarizes the search space of hyperparameters for SlimG
and the competitors. We conduct a grid search based on the vali-
dation accuracy for each data split for a fair comparison between
different models. It is notable that we run all our experiments on
five different random seeds, and thus the optimal set of hyperpa-
rameters can be found differently for those five runs.

3139

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Background
	2.2 Related Works

	3 Proposed Framework: GnnExp
	3.1 Pain Points of Existing GNNs
	3.2 Distinguishing Factors

	4 Proposed Method: SlimG
	5 Proposed Sanity Checks
	5.1 Design of Sanity Checks
	5.2 Observations from Sanity Checks

	6 Experiments
	6.1 Experimental Setup
	6.2 Accuracy (RQ1)
	6.3 Success of Simplicity (RQ2)
	6.4 Speed and Scalability (RQ3)
	6.5 Interpretability (RQ4)
	6.6 Ablation Studies (RQ5)

	7 Conclusion
	Acknowledgments
	References
	A Proofs of Lemmas
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2

	B Linearization Processes
	B.1 Linearization of Decoupled GNNs
	B.2 Linearization of Coupled GNNs
	B.3 Partial Linearization of Attention GNNs

	C Implementation of Sanity Checks
	D Hyperparameters

