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Abstract
Given a social network, how can we predict the connections between users and

determine whether they are based on shared hobbies or common friends? Similarly,
how can we identify anomalies in time series data and explain why they are suspicious?
Although recent machine learning models with improved performance are being de-
veloped, they are often black-box methods that are difficult to interpret. This leads us
to explainable artificial intelligence (XAI), which offers valuable insights through its
explanations. In this thesis proposal, each method we proposed is either inherently
explainable, or provides explanations for the data or decisions it makes.

In the first part of graph mining, we focus on node-level tasks. We propose algo-
rithms to analyze various types of graph information, e.g., the network effects of the
graph structure, and the usable information in the node features. Our proposed linear
methods are not only inherently interpretable and fast, but also outperform baselines in
solving node classification and link prediction tasks. In node classification, our method
improves the accuracy by 10.3% over the second-best baseline, while being 2.5 times
faster. In link prediction, our method achieves an average rank 1.1, outperforming
baselines on 11 out of 12 real-world datasets.

In the second part of graph mining, we focus on graph-level tasks. We discover
frequent substructures using the minimum description length (MDL) principle and
learnable graph kernels. In graph anomaly detection, our MDL-based method is up to
58 times faster than the second-best baseline, while achieving 1.3 times higher average
precision. In graph regression, our method with learnable graph kernels improves the
mean absolute error by 14.3%.

For time series mining, we primarily focus on anomaly detection with applications
that include medical signals (EEG) and sensor signals. Unlike traditional methods that
focus on point anomalies, our algorithm focuses on group anomalies. Moreover, our
algorithm is fast and scalable, and discovers and ranks both point and group anomalies in
2 minutes for 1 million data points on a stock machine. Next, our model that leverages
self-supervised learning effectively identifies the ground truth hyperparameters of
anomalies in the time series, resulting in an average rank 2.2 compared to the baselines.

Finally, we include several impactful real-world applications that leverage graph
algorithms, such as human trafficking detection. Our method detects human-trafficking
ads with 84% precision, while requiring only 8 hours to process 4 million documents.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, many effective machine learning (ML) and deep learning methods have been
proposed to solve a variety of problems in graphs and time series. However, the majority of
the methods are designed to optimize performance, often neglecting the importance of model
transparency. In other words, these black-box methods are neither inherently explainable nor do
they provide explanations for their decisions.

For this reason, in recent years, explainable artificial intelligence (XAI) has gained a lot of
attention. These approaches are designed not only to provide explanations but also to remain
effective. XAI paves the way for ML methods to be adopted in the real world, especially in domains
that require well-justified solutions. These domains include legal, medical, financial, and so on. For
example, if an ML method is developed to assist the doctor making medical decisions, the doctor
will need it to provide explanations. It is crucial that the method and the doctor complement each
other by allowing the doctor to understand why the decision was made.

Among the many types of data, graph and time series are two of the most common. Graphs,
including social networks, financial transaction graphs, and product co-purchasing networks, have
been applied to numerous real-world applications. Similarly, time series data has been widely
employed for monitoring in many systems, such as server machine metrics, IoT for drinking water,
and EEG recordings. This brings us to the critical topic of detecting anomalies in time series.

1.2 Contribution

In this proposal, we specifically focus on introducing explainable ML methods tailored for graphs
and time series. Our carefully designed methods are either inherently explainable, such as linear
methods, or provide explanations for either the dataset or the decision made by our method. They
solve a wide range of real-world problems and applications. In summary, our contributions can be
diveded into four parts:
• Graph Mining: Node-Level Tasks. In Chapter 2.2, we propose a statistical test to identify

whether there are network effects in the given graph (i.e. homophily, heterophily, both or none).
Thanks to our estimated compatibility matrix, our method is 12.9% more accurate and 3.4×
faster for node classification. In Chapter 2.3, we further consider the node features and propose a
linear graph neural network (GNN) that effectively classifies the nodes in both homophily and
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heterophily graphs. Compared to non-linear GNNs, our method is explainable, while being 10.3%
more accurate and 2.5× faster. In Chapter 2.4, we extend this linear GNN to measure and exploit
usable information in graphs for both node classification and link prediction. Our method achieves
an average rank of 1.1 among the state-of-the-art baselines in link prediction.

• Graph Mining: Graph-Level Tasks. In Chapter 3.2, we propose a minimum description length
(MDL) method that identifies anomalous graphs in a database containing many graphs, based on
frequent substructure mining. Our method is up to 58× faster, while being 1.3× better in average
precision. In Chapter 3.3, we further explore the frequent substructure by learning with graph
kernels and propose a novel GNN layer. Applied on a large graph regression benchmark, our
GNN layer outperforms the baseline by 14.3% better in mean absolute error.

• Time Series Mining. In Chapter 4.2, we propose an algorithm to detect group anomalies (such
as seizures) and point anomalies (such as noise) in time series EEG signals. Our method is the
first to detect both types of anomaly and takes only 2 minutes to run on 1 million data points. In
Chapter 4.3, we introduce a method that automatically fine-tunes the best hyperparameters for
creating pseudo-time-series anomalies, to learn the anomaly detector in a self-supervised manner.
Our method achieves an average rank 2.2 in F1 score. In Chapter 4.4, we further propose to
extend this method to search for hyperparameters for multiple types of anomalies simultaneously.

• Applications. In Chapter 5.2, we propose an algorithm that incrementally detects templates
among text documents by representing them as line graphs. Our method detects human-trafficking
ads with 84% precision, while requiring only 8 hours for 4 million documents. In Chapter 5.3,
we propose to design a graph algorithm to detect fraudulent transactions on temporal financial
graphs. In Chapter 5.4, we propose to develop a retrieval-augmented generation (RAG) framework
designed for use with a database containing both text documents and knowledge graphs.

1.3 Organization

The rest of the thesis proposal is organized as follows. In Chapter 2, we present explainable graph
algorithms for node-level tasks, solving node classification and link prediction. In Chapter 3,
we address graph-level tasks by leveraging the frequent substructures in the graph database. In
Chapter 4, we propose several algorithms for time series anomaly detection, including an application
in seizure detection. In Chapter 5, we present various explainable methods that utilize graphs to
solve real-world applications. In Appendix A and B, we introduce the related works and the datasets
used in the thesis. A summary of the organization can be found in Table 1.1.

In each chapter we follow the same organization: goal, approach, and results.

Node-Level Graph-Level Time Series
Algorithms Chapter 2.2, 2.3, 2.4 Chapter 3.2, 3.3 Chapter 4.3, 4.4

Applications Chapter 5.3, 5.4 Chapter 5.2 Chapter 4.2

Table 1.1: Thesis organization.
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Chapter 2

Graph Mining: Node-Level Tasks

2.1 Preliminaries

Homogeneous Graphs A homogeneous graph is a data structure that consists of nodes and
edges, where both the nodes and edges are of the same type. The structure of a graph containing
n nodes can be represented by an adjacency matrix A ∈ Rn×n, where in the matrix, 1 indicates
the presence of an edge between two nodes, and 0 indicates no edge. Each node i has a unique
label l(i) ∈ {1, . . . , c}, where c is the number of classes. The set of labels y = {l(1), . . . , l(n)}
can be represented by a one-hot matrix Y ∈ Rn×c. Graphs that contain node features or attributes
X ∈ Rn×f , where f is the number of features, are called node-attributed graphs.

Homophily and Heterophily A graph with network effects provides meaningful information
through its structure, which can be used to identify node labels or connections between nodes. For
example, “talkative people tend to make friends with other talkative people” denotes homophily,
while “teenagers are inclined to interact with those of the opposite gender on social networks”
denotes heterophily. Some graphs may exhibit either one or both, while others may exhibit neither,
meaning there are no network effects.

Message Passing Methods Message-passing methods utilize the graph structure to propagate
information from the neighbors of a node to the node itself. Known as sum-product message passing,
belief propagation methods [28, 44, 93, 94] directly perform inference on the graph through several
propagation iterations. Although they are fast and effective because they require neither parameters
nor training, belief propagation methods are mainly designed to solve node classification problems
based solely on the graph structure and usually do not consider node features.

Another variety of message passing methods, graph neural networks (GNNs) [32, 40, 59, 91], are
a class of deep learning models. They are commonly used to generate low-dimensional embeddings
of nodes to perform graph tasks by propagating node features through structure and learning
end-to-end with a training objective. Some studies target interpretable models and remove the
non-linear functions in GNNs, while still achieving good performance, which we call linear GNNs
[58, 97, 98, 118]. One of the many advantages of linear GNNs is that their node embeddings are
available prior to model training.
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2.2 NETEFFECT: Discovery and Exploitation of Generalized
Network Effects

Section based on work that appeared at PAKDD 2024 [50][PDF].

2.2.1 Goal
Given a large graph with few node labels and no node features, how can we determine whether the
graph structure is useful for classifying nodes? The graph structure may not provide meaningful
information for inference tasks, so a preliminary test is needed. That is to say, we want to know
whether the given graph has generalized network-effects (GNE) or not, and to distinguish which
GNE the graph has, i.e., homophily, heterophily, or both (which we call “x-ophily”), if there is any.
Furthermore, we aim to exploit GNE for better and faster node classification.

Problem 1. Generalized Network-Effects (GNE)
(1) Given a graph without node attributes and with a few node labels.
(2) Find:

(a) Hypothesis Testing: How to identify whether the graph has GNE or not?
(b) Estimation: How to estimate the type of GNE in a principled way?
(c) Exploitation: How to efficiently exploit GNE in node classification?

No GNE

Strong GNE

Input Output
LabelAdjacency

(a) NETEFFECT_TEST:
Principled.

Label
2400x6

N
od

e 
ID

Label ID

Adjacency
2400x2400

Input

Estimated
Compatibility Matrix

Homophily

Heterophily

Output

Compatibility
6x6

(b) NETEFFECT_EST:
Explainable and General.

(c) NETEFFECT_EXP:
Accurate and Scalable.

Figure 2.1: NETEFFECT works well, thanks to its three novel contributions: (a) NETEFFECT_TEST statis-
tically tests the existence of GNE. (b) NETEFFECT_EST explains the graph with the x-ophily compatibility
matrix. (c) NETEFFECT_EXP wins in node classification and is fast.

2.2.2 Approach
We propose NETEFFECT, with 3 contributions as the corresponding solutions:
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1. NETEFFECT_TEST uses statistical tests to verify whether GNE exists at all. Figure 2.1a
shows how it works, and Figure 2.2 shows its discovery, where many large real-world datasets
known as heterophily graphs have little GNE.

2. NETEFFECT_EST explains if the graph is homophily, heterophily, or x-ophily by estimating
the c×c compatibility matrix with the derived closed-form formula. In Figure 2.1b, it explains
the interrelations of classes by the estimated compatibility matrix, which implies x-ophily.

3. NETEFFECT_EXP efficiently exploits GNE to perform better in node classification. It
wins in both accuracy and time on a million-scale heterophily graph “Pokec-Gender”, only
requiring 14 minutes (Figure 2.1c).

NETEFFECT_TEST We use Pearson’s χ2 test to decide whether class ci (say, “talkative people”),
has statistically more, or fewer edges to class cj (say, “silent people”). Specifically, given a class
pair (ci, cj), the input to the test is a 2× 2 contingency table that contains the counts of edges that
connect pairs of nodes whose labels are in {ci, cj}. The null hypothesis of the test is: “Edges are
equally likely to exist between nodes of the same class and those of different classes.” If the p value
of the test is not less than 0.05, we accept the null hypothesis, which represents that the chosen class
pair (ci, cj) exhibits no statistically significant GNE in the graph.

NETEFFECT_TEST identifies the lack of GNE in “Genius” and “Penn94” datasets, which are
widely known as heterophily graphs. In “Genius” (Figure 2.2a), we see that both classes 1 and 2 tend
to connect to class 1, making class 2 indistinguishable by graph structure. NETEFFECT_TEST thus
accepts the null hypothesis, and identifies the lack of GNE. We can observe a similar phenomenon
in “Penn94” (Figure 2.2b). On the other hand, NETEFFECT_TEST identifies the strong GNE in
“Pokec-Gender” dataset, which exhibit heterophily (Figure 2.2c).
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Figure 2.2: NETEFFECT_TEST works, discovering that real-world heterophily graphs have little GNE. For
each graph, we report the edge counting on the left (not available in practice), and the p-value table from
NETEFFECT_TEST on the right, where “P” denotes the presence of GNE, and “F” denotes the absence.

NETEFFECT_EST A compatibility matrix Hc×c is a row-normalized matrix, where Hku is the
relative influence of class k on class u. It is a natural strategy to explain the network-effects, and is
commonly used in belief propagation. To estimate Ĥ, we turn the compatibility matrix estimation
into an optimization problem and solve it with the proposed closed-form formula:
Lemma 1 (Network Effect Formula (NEF)). Given adjacency matrix A and initial beliefs Ê, the
closed-form solution of vectorized compatibility matrix vec(Ĥ) is:

vec(Ĥ) = (XTX)−1XTy (2.1)

where X = Ic×c ⊗ (AÊ) and y = vec(Ê).
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The proof is in [50]. ·̂ denotes the matrix is centered around 1/c to ensure the convergence of belief
propagation. With few observed labels, NETEFFECT_EST uses ridge regression with leave-one-out
cross-validation (RidgeCV) to solve NEF. It is noteworthy that its computational cost is negligible
as well, and it requires no training.
NETEFFECT_EXP With only a few labels, it becomes crucial to better utilizing the graph structure
for node classification. We propose to pay attention to influential neighbors using our proposed
“emphasis” matrix A∗, i.e. a weighted adjacency matrix. The influential neighbors are identified as
those that are connected by higher-order structures, e.g., cliques. NETEFFECT_EXP computes the
final beliefs iteratively by aggregating the beliefs of neighbors through A∗ until they converge.

2.2.3 Results
In Table 2.1, NETEFFECT outperforms all competitors in accuracy and running time. In graphs
exhibiting strong GNE, namely “Synthetic” and “Pokec-Gender”, NETEFFECT outperforms com-
petitors significantly by more than 34.3% and 12.9% accuracy owing to precise estimations of the
compatibility matrix. In Table 2.2, NETEFFECT-Hom outperforms all the competitors on 3 out
of 4 homophily graphs, and NETEFFECT performs similarly to NETEFFECT-Hom, which uses
an identity matrix as the compatibility matrix. NETEFFECT correctly estimates a near-identity
compatibility matrix in homophily graphs. It is also the fastest algorithm among all baselines. For
example, in arXiv-Year, NETEFFECT is 57.4× faster than MixHop.

Table 2.1: NETEFFECT wins on x-ophily and Heterophily datasets.

Dataset Synthetic Pokec-Gender arXiv-Year Patent-Year
GNE Strength Strong x-ophily Strong Heterophily Weak x-ophily Weak Heterophily

Method Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time
GCN 16.7±0.0 3456 4.1× 51.8±0.1 2906 3.4× 35.3±0.1 132 2.5× 26.0±0.0 894 2.3×

APPNP 18.6±1.1 7705 9.2× 50.9±0.3 6770 7.8× 33.5±0.2 423 8.1× 27.5±0.2 2050 5.2×
MixHop 16.7±0.0 58391 70.0× 53.4±1.2 53871 62.1× 39.6±0.1 2983 57.4× 26.8±0.1 18787 47.6×

GPRGNN 18.9±1.2 7637 9.1× 50.7±0.2 6699 7.7× 30.1±1.4 400 7.7× 25.3±0.1 2034 5.1×
HOLS 46.1±0.1 1672 2.0× 54.4±0.1 8552 9.9× 34.1±0.3 566 10.9× 23.6±0.0 510 1.3×

NETEFFECT-Hom 45.6±0.1 835 1.0× 56.9±0.2 869 1.0× 37.0±0.3 52 1.0× 24.3±0.0 429 1.1×
NETEFFECT 80.4±0.0 841 1.0× 67.3±0.1 867 1.0× 38.9±0.1 52 1.0× 28.7±0.1 395 1.0×

Table 2.2: NETEFFECT wins on Homophily datasets.

Dataset Facebook GitHub arXiv-Category Pokec-Locality
Method Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time Accuracy Time (s) Rel. Time
GCN 67.0±0.8 12 2.0× 81.0±0.6 28 2.2× 25.4±0.3 216 2.3× 17.3±0.4 4002 2.9×

APPNP 50.5±2.2 46 7.7× 74.2±0.0 73 5.6× 19.4±0.6 1176 12.3× 16.8±1.7 11885 8.6×
MixHop 69.2±0.7 296 49.3× 77.8±1.3 526 40.5× 33.0±0.6 3203 33.4× 16.9±0.3 52139 37.9×

GPRGNN 51.9±1.5 47 7.8× 74.1±0.1 75 5.8× 19.7±0.3 1174 12.2× 30.0±2.0 11959 8.7×
HOLS 86.0±0.4 934 155.7× 80.8±0.5 126 9.7× 61.4±0.2 627 6.5× 63.7±0.3 8139 5.9×

NETEFFECT-Hom 85.2±0.5 6 1.0× 81.3±0.5 13 1.0× 61.7±0.2 96 1.0× 66.0±0.2 1437 1.0×
NETEFFECT 85.2±0.5 6 1.0× 81.3±0.5 13 1.0× 58.8±0.6 108 1.1× 64.8±0.8 1377 1.0×
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2.3 SLIMG: Accurate, Robust, and Interpretable Graph Mining

Section based on work that appeared at KDD 2023 [110][PDF].

2.3.1 Goal
How can we solve semi-supervised node classification in node-attributed graphs fast and accurately?
How can we handle various scenarios of graphs, possibly with noisy features and structures? In
these noisy scenarios, graph neural networks (GNNs) [32, 40, 92] easily overfit their parameters
to such noise. In Chapter 2.2, we study the network effects in a graph without node features, and
now extend the idea to the node-attributed graph. We want to tackle node classification in these
real-world graph scenarios, including useless features and useless graph structure (no network
effects). Moreover, we want to interpret the graph data by pointing out the information that is useful
for identifying the class of a node, e.g., node features, graph structure, or both.

Problem 2. Semi-Supervised Node Classification
(1) Given an undirected graph G = (A,X) and labels y of m nodes, where m≪ n.
(2) Predict the unknown classes of n−m testing nodes.
(3) Identify the graph information that is useful for the prediction.

1023 × 101 4 × 101 6 × 101

Run Time (s)
55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

ogbn-Products
SlimG (Ours)
LR
Reg. Kernel
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RW Kernel
SGC
DGC
S2GC
G2CN
GCN
SAGE
GCNII
H2GCN
APPNP
GPRGNN
GAT

 2.5x 
Faster

10.3%
Higher

Figure 2.3: SLIMG wins both on accuracy and
training time on ogbn-Products with 61.9M edges.
Several baselines run out of memory (crossed out).

Expected

(a) No Network Effects (b) Useless Features

Figure 2.4: SLIMG is interpretable: it suppresses
useless information and focuses on useful informa-
tion for each scenario: (a) self-features g(X) and (b)
structural features U. The learned weights are directly
matched with the expectations.

2.3.2 Approach
We propose SLIMG, a linear GNN model based on the careful simplicity principle: a simple,
carefully-designed model can be more accurate than complex ones thanks to better generalizability,
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Table 2.3: GNNEXP encompasses popular GNNs. The * and ** superscripts mark fully and partially
linearized models, respectively. We derive pain points and distinguishing factors through GNNEXP.

Model Type Propagator function P(A,X)

LR Linear X

SGC Linear ÃK
symX

DGC Linear [(1− T/K)I+ (T/K)Ãsym]
KX

S2GC Linear
∑K

k=1(αI+ (1− α)Ãk
sym)X

G2CN Linear ∥Ni=1[I− (Ti/K)((bi − 1)I+Asym)
2]KX

PPNP* Decoupled (I− (1− α)Ãsym)
−1X

APPNP* Decoupled [
∑K−1

k=0 α(1− α)kÃk
sym + (1− α)KÃK

sym]X

GDC* Decoupled S = sparseϵ(
∑∞

k=0(1− α)kÃk
sym) for S̃symX

GPR-GNN* Decoupled ∥Kk=0Ã
k
symX

Model Type Propagator function P(A,X)

ChebNet* Coupled ∥K−1
k=0 A

k
symX

GCN* Coupled ÃK
symX

SAGE* Coupled ∥Kk=0A
k
rowX

GCNII* Coupled ∥K−2
k=0 Ã

k
symX ∥ ((1− α)ÃK

sym + αÃK−1
sym )X

H2GCN* Coupled ∥2Kk=0A
k
symX

GAT** Attention
∏K

k=1[diag(Xwk,1)Ã+ Ãdiag(Xwk,2)]X

DA-GNN** Attention
∑K

k=0 diag(Ã
k
symXw)Ãk

symX

robustness, and easier training. The design decisions of SLIMG are made to follow this principle by
observing and addressing the pain points of existing GNNs, analyzed by our framework, GNNEXP.
GNNEXP Why do GNNs work well when they do? In what scenarios might a GNN not work well?
We propose GNNEXP, a framework that derives the feature propagator function of GNN models
by ignoring nonlinearity, so that they are comparable. GNNEXP represents the characteristic of a
GNN as a linear feature propagator function P , which transforms the node features X by the graph
structure A. Based on the linearization in Table 2.3, we derive 4 pain points of existing GNNs:

1. Lack of robustness: All models do not handle multiple graph scenarios at the same time, i.e.,
graphs with homophily, heterophily, no network effects, or useless features.

2. Vulnerability to noisy features: All models cannot fully exploit the graph structure if the
features are noisy, as they depend on the node feature matrix X.

3. Efficiency and effectiveness: Concatenation-based models create spurious correlations
between feature elements, requiring more parameters than in other models.

4. Many hyperparameters: Hyperparameters in P impair its interpretability and require
extensive tuning.

What potential choices do we have in designing a general approach that addresses the pain
points? We analyze the GNN variants and point out 3 distinguishing factors:

1. Combination of features: How should we combine node features, the immediate neighbors’
features, and the K-step-away neighbors’ features?

2. Modification of A: How should we normalize or modify the adjacency matrix A?

3. Heterophily: What to do if the direct neighbors differ in their features or labels?
SLIMG We propose SLIMG, which addresses the pain points of existing GNN models with strict
adherence to the careful simplicity principle. SLIMG has the following propagator function:

P(A,X) = U︸︷︷︸
Structure

∥ g(X)︸ ︷︷ ︸
Features

∥ g(A2
rowX)︸ ︷︷ ︸

2-Step Neighbors

∥ g(Ã2
symX)︸ ︷︷ ︸

Grand Neighbors

(2.2)

where g(·) is the principal component analysis (PCA) for the orthogonalization of each component,
followed by an L2 normalization, and structural features U ∈ Rn×r is derived by running the
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low-rank singular value decomposition (SVD) on A. Our 4 design decisions of SLIMG are:
1. Concatenating winning normalizations (for pain point 1 - robustness): The four components

in Equation 2.2 show their strength in different scenarios: structural features U for graphs
with noisy features, self-features X for a noisy structure, two-step aggregation A2

row with no
self-loops for heterophily graphs, and smoothed two-hop aggregation with self-loops Ã2

sym of
the local neighborhood for homophily graphs.

2. Structural features (for pain point 2 - noisy features): We resort to the structure A ignoring
X when features are missing, noisy, or useless for classification. We adopt low-rank SVD on
A with rank r to extract structural features U.

3. Orthogonalization and sparsification (for pain point 3 - collinearity): To improve the
efficiency and effectiveness, we run PCA on each of the four components to orthogonalize
them and use group LASSO to learn sparse weights on the component level.

4. Multi-level neighborhood aggregation (for pain point 4 - hyperparameters): Our propagator
function P considers multiple levels of neighborhoods through the concatenation. This
allows us to remove all hyperparameters from P to tune for each dataset, gaining in both
interpretability and efficiency. X, Ã2

sym, and A2
row aggregate the zero-, one-, and two-hop

neighborhood of each node, respectively, considering the self-loops included in Ã2
sym.

2.3.3 Results
In Table 2.4, SLIMG outperforms all competitors in 9 out of 13 graphs, and is the only model that
exhibits no failures (i.e., no red cells). In Figure 2.3, SLIMG achieves the highest accuracy while
being 2.5× faster than the second-best model on the largest graph with 61M edges. In Figure 2.4,
SLIMG assigns large weights to the correct factors in different graph scenarios. For example, in
Figure 2.4a, when there are no network effects, it assigns the largest weights to node features g(X).

Table 2.4: SLIMG wins most of the times on 13 real-world datasets (7 homophily and 6 heterophily graphs)
against 15 competitors. Green ( , , ) marks the top three (higher is darker); red ( ) marks the ones that are
too low (2σ below the third place). SLIMG is the only approach that exhibits no failures (i.e., no red cells) in
all datasets. Most competitors cause out-of-memory (OOM) errors on large graphs (marked by red ).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec Avg. Rank

LR 51.5±1.2 52.9±4.5 79.9±0.5 73.9±1.2 79.3±1.5 48.3±1.9 56.4±0.5 24.9±1.7 26.7±1.9 27.8±0.8 63.5±0.5 53.0±0.1 61.3±0.0 11.7 (4.2)

Reg. Kernel 67.8±2.5 62.1±4.4 83.4±1.4 80.3±1.4 87.1±1.2 O.O.M. O.O.M. 29.4±2.6 24.3±2.3 29.6±1.4 O.O.M. O.O.M. O.O.M. 12.2 (3.8)
Diff. Kernel 70.6±1.5 62.7±3.8 82.1±0.4 83.1±1.0 89.8±0.6 O.O.M. O.O.M. 34.5±7.9 28.3±1.5 24.7±0.9 53.5±0.8 O.O.M. O.O.M. 11.8 (2.5)
RW Kernel 72.7±1.7 64.1±3.9 83.1±0.7 84.2±0.7 90.6±0.7 63.2±0.2 74.2±0.0 34.9±3.5 25.0±1.6 26.4±1.1 63.1±0.7 57.6±0.1 59.5±0.0 8.3 (3.3)

SGC 76.2±1.1 65.8±3.9 84.1±0.8 83.7±1.6 90.1±0.9 65.0±3.4 74.6±5.1 38.1±4.5 33.1±1.0 24.6±0.8 64.0±1.1 56.5±0.1 69.8±0.0 6.6 (4.2)
DGC 77.8±1.4 66.1±4.2 84.3±0.6 83.9±0.7 90.4±0.2 65.2±4.0 68.7±13. 37.2±3.7 29.2±1.2 25.2±2.1 62.5±0.4 58.2±0.2 60.7±0.1 6.6 (3.2)
S2GC 78.3±1.5 66.9±4.4 84.3±0.3 83.1±0.8 90.1±0.8 62.0±7.4 58.3±18. 34.9±4.9 27.6±1.8 26.7±1.8 63.1±0.5 58.7±0.1 61.2±0.0 6.6 (2.7)
G2CN 76.6±1.5 64.2±3.3 81.4±0.6 82.8±1.6 88.8±0.5 O.O.M. O.O.M. 40.7±2.9 32.1±1.5 24.3±0.5 O.O.M. O.O.M. O.O.M. 10.5 (4.5)

GCN 76.0±1.2 65.0±2.9 84.3±0.5 85.1±0.9 91.6±0.5 62.8±0.6 O.O.M. 38.5±3.0 31.4±1.8 26.8±0.4 62.9±0.7 57.0±0.1 63.9±0.4 6.3 (2.4)
SAGE 74.6±1.3 63.7±3.6 82.9±0.4 83.8±0.5 90.6±0.5 61.5±0.6 O.O.M. 39.8±4.3 27.0±1.3 27.8±0.9 O.O.M. 56.6±0.4 68.9±0.1 8.5 (3.5)
GCNII 77.8±1.7 63.4±3.0 84.9±0.8 82.3±1.8 90.8±0.6 45.7±0.5 O.O.M. 30.5±2.5 21.9±3.0 29.0±1.3 64.5±0.5 56.9±0.6 62.1±0.3 8.4 (4.6)
H2GCN 77.6±0.9 64.7±3.8 85.4±0.4 49.5±16. 75.8±11. O.O.M. O.O.M. 31.9±2.6 25.0±0.5 28.9±0.6 63.9±0.4 58.7±0.0 O.O.M. 8.9 (4.9)
APPNP 80.0±0.6 67.1±2.8 84.6±0.5 84.2±1.7 92.5±0.3 53.4±1.3 O.O.M. 30.9±4.7 23.9±3.2 26.1±1.0 63.7±0.9 47.3±0.3 57.4±0.4 7.6 (4.8)
GPR-GNN 78.8±1.3 64.2±4.0 85.1±0.7 85.0±1.0 92.6±0.3 58.5±0.8 O.O.M. 31.7±4.7 26.2±1.6 29.5±1.1 64.5±0.4 57.6±0.2 67.6±0.1 5.4 (3.7)
GAT 78.2±1.2 65.8±4.0 83.6±0.2 85.4±1.4 91.7±0.5 58.2±1.0 O.O.M. 39.1±4.1 28.6±0.6 26.4±0.4 60.5±0.8 O.O.M. O.O.M. 7.5 (3.7)

SLIMG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1 1.9 (1.5)
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2.4 NETINFOF: Measuring and Exploiting Network Usable In-
formation

Section based on work that appeared at ICLR 2024 [51][PDF].

2.4.1 Goal
Given a graph with node features, how to tell if a graph neural GNN can perform well on graph tasks
or not? How can we know what information, if any, is usable to the tasks, namely, link prediction
and node classification? In Chapter 2.3, we study this problem in node classification and identify the
useful information based on the learned parameters. We want to extend this idea by quantitatively
measuring how informative the graph structure and node features are for the task at hand without
training, which we call network usable information (NUI). Furthermore, we intend to generalize the
method to link prediction as well, which has not yet been done with linear GNNs.

Problem 3. Network Usable Information (NUI)
(1) Given an undirected graph G = (A,X) and labels y of m nodes, where m≪ n.
(2) Measure NUI in the given graph.
(3) Exploit NUI to solve the graph task, i.e., link prediction and node classification.
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Figure 2.5: NETINFOF wins in real-world
datasets on link prediction (most points are be-
low or on line x = y).

0.5 0.6 0.7 0.8 0.9 1.0
NetInfoF_Score

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 H
its

@
K

y=2x-1

Ideal

(a) Link Prediction

0.2 0.4 0.6 0.8 1.0
NetInfoF_Score

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

x=y

Ideal

(b) Node Classification

Figure 2.6: NETINFOF_SCORE highly correlates to test
performance in real-world datasets. Each point denotes the
result of a component from each dataset.

2.4.2 Approach
We propose NETINFOF, a framework to measure and exploit NUI in a given graph. First, NET-
INFOF_PROBE measures NUI of the given graph with NETINFOF_SCORE (Equation 2.3), which
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we proved is lower-bound the accuracy (Theorem 1). Next, NETINFOF_ACT solves both the link
prediction and node classification by sharing the same backbone with NETINFOF_PROBE. To avoid
training, we compute NETINFOF_SCORE by representing different components of the graph with
derived node embeddings. For link prediction, we propose the adjustment to node similarity with
a closed-form formula to address the limitations when the embeddings are static. In Figure 2.5,
NETINFOF_ACT outperforms the GNN baselines most times in link prediction; in Figure 2.6,
NETINFOF_SCORE measured by NETINFOF_PROBE highly correlates to the test performance.
NETINFOF_SCORE We propose to analyze the derived node embeddings in linear GNNs to avoid
training. We derive 5 different components of node embeddings that can represent the information
of graph structure U, neighborhood R, node features F, and features of 2-step neighbors P, and
features of grand neighbors S. Compared to SLIMG, a neighborhood node embedding R is added
to capture the local higher-order neighborhood information of nodes with Personalized PageRank
(PPR). To analyze the information in the node embedding, we propose NETINFOF_SCORE and
prove that it low-bounds the accuracy:
Definition 1 (NETINFOF_SCORE of Y given X). Given two discrete random variables X and Y ,
NETINFOF_SCORE of Y given X is defined as:

NETINFOF_SCORE = 2−H(Y |X) (2.3)
where H(·|·) denotes the conditional entropy.
Theorem 1 (NETINFOF_SCORE). Given two discrete random variables X and Y , NETINFOF_SCORE

of Y given X low-bounds the accuracy:

NETINFOF_SCORE = 2−H(Y |X) ≤ accuracy(Y |X) =
∑
x∈X

max
y∈Y

px,y (2.4)

where px,y is the joint probability of x and y.
The proof is in [51]. The intuition behind this theorem is that the conditional entropy of Y (e.g.
labels) given X (e.g. node embeddings), is a strong indicator of how good of a predictor X is,
to guess the target Y . It provides an advantage to NETINFOF_SCORE by giving it an intuitive
interpretation, which is the lower-bound of the accuracy. When there is little usable information for
the task, the value of NETINFOF_SCORE is close to random guessing.
Adjusted Node Similarity With the derived node embeddings, how can we measure NUI as well as
solve the task? In this proposal, we focus on explaining how to solve link prediction. Compared to
general GNNs, the node embeddings of linear GNNs are given by a closed-form formula. Therefore,
they are rarely applied on link prediction because of following two reasons:

1. Node similarity with dissimilar neighbors: Predicting links by GNNs relies on measuring
node similarity, which is incorrect if the neighbors are expected to have dissimilar embeddings;
for example, in a bipartite graph, while a source node is connected to a target node, their
structural embeddings are very different, resulting in low node similarity by linear GNNs;

2. Negative edges: To perform well on Hits@K, it is crucial to suppress the similarity of the
nodes of negative edges, i.e. the non-existent connections. Hits@K is the ratio of positive
edges that are ranked at K-th place or above among both the positive and negative edges,
which is preferred in link prediction. Since the embeddings of linear GNNs are static, they
cannot learn to separate the embeddings of nodes on each side of the negative edges.
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For these reasons, we propose an adjustment to the similarity of the nodes, which generalizes
NETINFOF to link prediction. It is done by using the compatibility matrix H∗ ∈ Rd×d to rewrite
the node similarity function from a simple dot product (cosine similarity) zi · zj to ziH

∗z⊺j , where
z ∈ R1×d is the L2-normalized node embedding. H∗ is computed as follows:
Lemma 2 (Compatibility Matrix with Negative Edges). The compatibility matrix with negative
edges H∗ has the closed-form solution and can be solved by the following optimization problem:

min
H∗

∑
(i,j)∈E

(1− ziH
∗z⊺j )−

∑
(i,j)∈Eneg

(ziH
∗z⊺j ), (2.5)

where Eneg denotes the set of negative edges.
The proof is in [51]. We further provide several techniques to ensure the fast computation of H∗.
NETINFOF_PROBE Based on Theorem 1, we propose NETINFOF_PROBE to compute NET-
INFOF_SCORE without exactly computing the conditional entropy of the high-dimensional vari-
ables. By sampling negative edges, we turn the link prediction into a binary classification task. For
each component of node embeddings, it estimates its corresponding H∗ and discretizes the adjusted
node similarity of edges (e.g. ÛiH

∗
Û
⊙ Ûj) into k bins. NETINFOF_SCORE can then be easily

computed between two categorical variables using a prediction table k × 2. In Figure 2.6, we find
that NETINFOF_SCORE measured by NETINFOF_PROBE highly correlates to the test performance.
NETINFOF_ACT To solve link prediction, NETINFOF_ACT shares the same derived node em-
beddings and uses a link predictor following by the Hadamard product of the embeddings. We
transform the embeddings on one side of the edge with H∗ and concatenate all components:

ÛiH
∗
Û
⊙ Ûj︸ ︷︷ ︸

Structure

∥ R̂iH
∗
R̂
⊙ R̂j︸ ︷︷ ︸

PPR

∥ F̂iH
∗
F̂
⊙ F̂j︸ ︷︷ ︸

Features

∥ P̂iH
∗
P̂
⊙ P̂j︸ ︷︷ ︸

Features of
2-Step Neighbors

∥ ŜiH
∗
Ŝ
⊙ Ŝj︸ ︷︷ ︸

Features of
Grand Neighbors

(2.6)

where (i, j) ∈ E ∪ Eneg. We use LogitReg as the predictor for its scalability and interpretability.

2.4.3 Results
In Table 2.5, NETINFOF outperforms GNN baselines in 11 out of 12 datasets on link prediction,
and has the highest average rank. Compared to non-linear GNNs, SLIMG performs worse in most
heterophily graphs, showing that it cannot properly measure the node similarity of heterophily
embeddings. By addressing the limitations of linear GNNs, NETINFOF consistently outperforms
both SLIMG and non-linear GNNs in both homophily and heterophily graphs.

Table 2.5: NETINFOF wins on link prediction in most real-world datasets. Hits@100 is reported for most
datasets, and Hits@1000 for the large datasets (Products, Twitch, and Pokec).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec Avg. Rank

GCN 67.1±1.8 60.4±10. 47.6±13. 22.5±3.1 39.1±1.6 14.8±0.6 02.2±0.1 82.1±4.5 16.5±1.0 31.1±1.7 16.2±0.3 07.9±1.7 4.1 (1.3)
SAGE 68.4±2.8 55.9±2.5 57.6±1.1 27.5±2.1 40.0±1.9 00.7±0.1 00.3±0.2 84.7±3.6 15.5±1.5 27.6±1.4 08.7±0.6 05.5±0.5 4.5 (1.2)
GAT 66.7±3.6 65.2±2.6 55.1±2.4 28.3±1.6 44.2±3.5 05.0±0.8 O.O.M. 84.8±4.5 15.6±0.8 32.3±2.4 08.2±0.3 O.O.M. 4.0 (1.7)
H2GCN 64.4±3.4 35.7±5.4 50.5±0.9 17.9±0.7 29.5±2.4 O.O.M. O.O.M. 79.3±4.5 16.0±2.6 28.7±2.1 O.O.M. O.O.M. 6.2 (1.0)
GPR-GNN 69.8±1.9 53.5±8.1 66.3±3.3 20.7±1.8 34.1±1.1 13.8±0.8 O.O.M. 77.2±5.6 14.6±2.7 32.1±1.3 12.6±0.2 05.0±0.2 4.6 (1.8)
SLIMG 77.9±1.3 86.8±1.0 55.9±2.8 25.3±0.9 40.2±2.5 20.2±1.0 27.6±0.6 76.9±2.8 19.6±1.5 18.7±1.0 12.0±0.3 21.7±0.2 3.5 (1.8)

NETINFOF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5 1.1 (1.3)
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Chapter 3

Graph Mining: Graph-Level Tasks

3.1 Preliminaries

Graph Database A graph database consisting of I graphs G = {G1, . . . , GI}, where each graph
Gi(Vi, Ei) has a set of nodes Vi and a set of edges Ei. If the database is node-labeled and weighted,
each node v ∈ Vi has a label l(v) ∈ T , where T is the set of unique node labels, and each edge
(u, v) ∈ Ei is associated with a weight w(u, v). If the database is node-attributed, each graph Gi is
associated with a node feature matrix XGi

∈ R|Vi|×f , where f is the feature dimension.

Graph Anomaly Detection A detailed survey can be found in [5]. On the one hand, some studies
aim to identify the graph anomalies by mining the structural features of the graphs. OddBall [4]
detects anomalous nodes in a single weighted graph. ANOMRANK [112] detects anomalies in the
dynamic graphs. To improve interpretability, features are analyzed in pairs in [38], allowing easy
visualization of outliers. LookOut [31] further turns anomaly detection into a two-dimensional plot
selection problem, selecting the most explainable plots to highlight the anomalies. SpotLight [24]
aims to detect the anomalies in the streaming graphs .

On the other hand, some researchers seek to explain the graph anomalousness by frequent
substructures among graphs in a database. Cook et al. [16] proposed a graph substructure discovery
framework, which Noble and Cook [69] leverage in anomaly detection by using compression rates
in each iteration. For numerical edge weights, Yagada [21] uses discretization to assign discrete
labels to edges. In summary, graph anomaly detection aims to give anomaly scores ai for graphs
Gi ∈ G such that a higher score indicates a higher abnormality.

Kernel Convolution Networks (KCNs) Graph kernels are designed to measure similarity on a
pair of graphs. [53] derived the first neural network that outputs the random walk kernel similarity
scores between input graph and hidden, learnable path-like graphs. Random walk neural network
(RWNN) [68] generalized the work of [53] such that the hidden graphs can have any structure
without the path constraints. The designed model is claimed to be interpretable as the learned hidden
graphs “summarize” the input graphs. Later, [17] and [26] extended RWNN [68] to a multi-layer
architecture, in which each layer compares subgraphs around each node of the input with learnable
hidden graphs. We refer to these models as Kernel Convolution Networks (KCNs).
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3.2 GAWD: Graph Anomaly Detection in Weighted Graph
Databases

Section based on work that appeared at ASONAM 2021 [47][PDF].

3.2.1 Goal
Given a large graph database containing directed weighted node-labeled graphs, how can we detect
the anomalous graphs? How can we spot anomalies and summarize the normal behavior without
simultaneously losing information? Unlike embedding-based anomaly detector, we aim to propose
an anomaly detection that is explainable based on Minimum Description Length (MDL). Moreover,
we want it to be lossless during compression, and be able to handle weighted graphs.

Problem 4. Graph Anomaly Detection in Weighted Graph Databases
(1) Given a node-labeled weighted graph database G = {G1(V1, E1), . . . , GI(VI , EI)}.
(2) Output anomaly score ai for each graph Gi ∈ G.

Figure 3.1: GAWD wins on both effectiveness and scalability: We evaluate GAWD on 4 graph databases
and show the big gap between it and competitors w.r.t. average precision and run time.

3.2.2 Approach
We propose GAWD, which follows a general information-theoretic framework depicted in Algo-
rithm 1. This framework generalizes previous graph anomaly detection methods [16, 69]. Given
a graph database, the idea is to iteratively identify the “best” substructure that yields the largest
compression, replacing each of its occurrences with a super node. Each graph in the database is
then scored by how much it compresses over iterations — the more the compression, the lower
the anomaly score. The heart of this algorithm is the encoding scheme of graphs by Minimum
Description Length (MDL), which includes encoding the structure of graphs, i.e., nodes and edges.
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Built upon this encoding scheme, GAWD is improved to (i) handle edge weights, and (ii) enable
lossless reconstruction, with weight encoding and rewiring encoding, respectively.

Data: A graph database.
Result: Anomaly scores for graphs in database.

1 while True do
2 Detect frequent patterns in graph database;
3 if No pattern is found then
4 Break;
5 end
6 Identify pattern which compresses graphs

in database the most;
7 Compress graphs by this pattern;
8 end
9 Compute anomaly scores by compression rate;

Algorithm 1: General framework for graph
anomaly detection followed by [16, 69],
blue highlights the differences with GAWD.

21
B: 2A: 1

B: 2A: 1

P1: 3

P2: 3

(a) Case 1: between two super nodes.

21
B: 2A: 1

A: 1

P: 3

A: 1

(b) Case 2: between a super node and a regular node.

Figure 3.2: Rewiring encoding: Two possible cases
that the edge (re)connectivity information are different.

Weight Encoding. Given a substructure Pj = (Vj, Ej) at iteration j, Ej,(u,v) denotes all the edges in
the instances of substructure Pj in the database corresponding to (u, v) ∈ Ej . Weight encoding is
composed of two steps:

1. Representative Weight Discovery: We identify the representative edge weight w∗
Pj
(u, v)

among Ej,(u,v) by turning it into an optimization problem based on the MDL encoding. This
optimization problem aims to find out the edge weight that minimizes the bits needed for the
correction. Although not convex, the optimization is only 1-dimensional and hence relatively
easy to solve. We employ Dichotomous Search [14], which efficiently returns the optimal
solution in most cases.

2. Weight Corrections: After discovering w∗
Pj

, we now encode the weights in each instance. 1
bit is used to identify whether the weight correction is needed. If so, an extra 1 bit is used
to record the sign of the error. The numeric value is encoded by the universal code. We
remark that instead of discretizing edge weights into labels, our encoding scheme handles the
numeric value and is lossless.

Rewiring Encoding. After replacing Pj with a super node, all the edges connected to Pj merge into
super edges. For lossless reconstruction, the edge (re)connectivity information needs to be encoded.
When a super edge e(x, y) is created between x and y, there are two possible cases (in Figure 3.2):

1. Both x and y are super nodes after compression.

2. x = (Vx, Ex) is a super node and y remains a regular node after compression.
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For the former case, we first encode the cardinality of e, denoted ce = |Vj|2, depicting how many
edges it represents. For each edge in e, we encode substructure node IDs of its source and destination,
and then encode its weight. For the latter case, we encode how many edges e branch to, denoted
by = |Vj|. In other words, by denotes how many distinct nodes within x that y connects to. For each
edge, we encode the substructure node ID of y’s neighbor n ∈ Vx. We then encode the weight of
each edge the same as in the former case.
Anomaly Scoring Function. Once we identify the best substructure Pj at iteration j, we compress
the graphs in the database by Pj and save the compression rate cji , for each graph i, defined as:

cji =
(
DL∗

j−1(Gi)−DL∗
j(Gi)

)
/DL∗

0(G), (3.1)
where DLj(Gi) is the description length of Gi after j iterations. Finally, we compute the anomaly
scores as follows:

ai = 1− 1

j

j∑
k=1

[
(j − k + 1) ∗ cki

]
(3.2)

The anomaly score ranges from 0 to 1, where 1 denotes the most anomalous. The compression rates
are linearly weighted by the term j − k + 1, meaning that the earlier we identify the substructure as
the best one, the less anomalous that the graphs containing it are.

3.2.3 Results
In Table 3.1, GAWD outperforms most baselines significantly in all datasets. Noble et al. and
graph2vec fail because it cannot handle edge weights. GAWD shows 31.6%, 1365%, 18.7% and
145% improvement over Subdue-W in average precision on four datasets, respectively, highlighting
the insufficiency of discretization to handle edge weights. Even if node2vec accepts edge weights,
it is not sufficiently sensitive to detect anomalies in the edge weights.

Method
Precision Recall

AUC AP Time
@45 @90 @45 @90

node2vec 6.7 5.6 3 5.1 47.6 3.1 58.6s
graph2vec 2.2 1.1 1.0 1.0 48.7 3.1 2.9s

Noble et al. 0.0 0.0 0.0 0.0 47.6 3.1 43988s
Subdue-W 100.0 60.0 45.5 54.5 94.8 68.6 32621s

GAWD 100.0 92.2 45.5 83.8 93.8 90.3 760s

(a) UCI Message Dataset

Method
Precision Recall

AUC AP Time
@10 @20 @10 @20

node2vec 10.0 5.0 4.0 4.0 58.7 4.6 24.6s
graph2vec 10.0 5.0 4.0 4.0 59.0 6.1 1.1s

Noble et al. 0.0 0.0 0.0 0.0 51.7 3.2 7768s
Subdue-W 10.0 5.0 4.0 4.0 48.2 4.9 8443s

GAWD 90.0 5.0 36.0 68.0 82.1 73.8 207s

(b) Enron Email Dataset

Method
Precision Recall

AUC AP Time
@200 @400 @200 @400

node2vec 5.0 3.0 2.1 2.5 47.0 30. 31.3s
graph2vec 3.5 4.5 1.5 3.8 54.0 3.7 12.7s

Noble et al. 3.0 3.1 1.2 2.6 50.6 3.1 460s
Subdue-W 82.0 74.0 34.2 61.7 76.0 59.8 477s

GAWD 100.0 81.5 41.7 67.9 88.0 71.0 75s

(c) Accounting Dataset

Method
Precision Recall

AUC AP Time
@200 @400 @200 @400

node2vec 2.5 3.3 1.0 0.8 48.3 2.8 25.9s
graph2vec 0.0 2.0 1.7 3.1 49.6 3 14s

Noble et al. 3.0 3.0 1.3 2.5 50.0 3 1426s
Subdue-W 63.5 35 26.6 29.3 71.5 36.8 6584s

GAWD 100.0 89.0 41.8 74.5 95.3 90.2 176s

(d) Random Accounting Dataset

Table 3.1: GAWD significantly outperforms all the baselines: We show that the performance of GAWD
and structure-based and embedding-based baselines on 4 real-world and random graph datasets.
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3.3 RWK+: Descriptive Kernel Convolution Network with Im-
proved Random Walk Kernel

Section based on work that appeared at WWW 2024 [52][PDF].

3.3.1 Goal
Given a graph database, how can we spot anomalous graphs by learning the frequent graph patterns?
In Chapter 3.2, we introduce how graph anomaly detection can be done by frequent substructure
mining and MDL compression. We now turn to explore how it can be done by end-to-end learning
in a node-attributed graph database. More specifically, we want to solve this problem by adapting
the learnable random walk graph kernel (RWK) in GNNs. We name these “GNNs meet graph
kernels” style models Kernel Convolutional Networks (KCNs).

Problem 5. Improved Random Walk Kernel
(1) Given a graph database with node-attributed graphs.
(2) Find:

(a) An improved random walk kernel (RWK) that captures better substructural embeddings
for graph anomaly detection.

(b) An algorithm that learns the frequent substructures with the improved RWK.
(c) An algorithm that performs well in graph classification and regression.

RWK

RWK+

Figure 3.3: RWK+ is better. In RWK, these
two walks are identical; in RWK+, these two
walks are different because of considering the
intermediate nodes.

𝐴! 𝑋!

𝐴"! 𝑋"!

𝐴"" 𝑋""

…

𝒦(𝐺,𝐻#)

𝒦(𝐺,𝐻$)

… Unspervised 
Loss

Input Graph Hidden Graphs Similarity by Kernel Objective

Figure 3.4: RWK+CN: Each input graph is represented by
its RWK similarity to a set of small hidden graphs that are
learned end-to-end with an unsupervised loss.

3.3.2 Approach

We propose RWK+, RWK+CN, and RWK+Conv to solve three different problems. First, to capture
more representative patterns, we introduce several improvements to the RWK in both effectiveness
and efficiency and propose an improved graph kernel RWK+. Second, we propose a descriptive
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KCN RWK+CN by flipping the objective from a discriminative one to a descriptive one that helps
us capture relational patterns in the graph database. In addition, for the first time we derive the
mathematical connection of RWK+ to layer-wise neural network operators, which inspires us to
propose a novel GNN layer RWK+Conv. A summary of our contributions is as follows:

1. RWK+, an improved RWK with efficient color-matching.

2. RWK+CN, a descriptive KCN that learns descriptive hidden graphs.

3. RWK+Conv, a novel GNN layer sharing connection with message-passing.

Data: Gi = (AGi
,XGi

); Hj = (AHj
,XHj

);
max step t; {Hj are parameters in
RWK+Conv }.

1 Init: Y0 ← XGiX
⊺
Hj

, Y ← Y0 {Y0←
σ(XGi

X⊺
Hj

)};
2 for i = 1 to t do
3 Y← AGiYA⊺

Hj
;

4 Y(i) ←Y0 ⊙Y;
5 Y←Y0 ⊙Y(i);

6 Return
∑

i,j Y
(t)
i,j or

∑
i,j(

∑
l λl ·Y(l))i,j ;

Algorithm 2: Fast Color-Matching RWK and
RWK+Conv.

Table 3.2: RWK+CN works on a GED-based eval-
uation with 2-regular labeled graph. color-matching
and structural colors (SC) improve the quality of
structure and label learned by hidden graph.

Method Additional GED p-value p-value
Features w/o Labels w/ Row 1 w/ Row 2

RWNN None 5.25± 0.64 - -
RWK+CN None 5.02± 0.63 0.049∗ -
RWK+CN Identity 4.81± 0.70 1.0e-03∗∗ 0.043∗

RWK+CN SC 4.82± 0.70 1.1e-03∗∗ 0.043∗

Method Additional GED p-value p-value
Features w/ Labels w/ Row 1 w/ Row 2

RWNN None 7.25± 0.64 - -
RWK+CN None 6.60± 0.93 1.8e-04∗∗∗ -
RWK+CN Identity 6.12± 1.01 2.9e-08∗∗∗ 1.8e-03∗∗

RWK+CN SC 6.25± 1.01 7.2e-07∗∗∗ 0.015∗

RWK+ with efficient color-matching. Let XGi
∈ R|VGi

|×f depict the f -dimensional continuous
attributes for all nodes, and XHj

∈ R|VHj
|×f and AHj

∈ R|VHj
|×|VHj

| depict the learnable node
features and the learnable adjacency matrix of the hidden graph H , respectively. For two graphs G
and H , let S = XHj

X⊺
Gi
∈ R|VHj

|×|VGi
| encode the dot product similarity between the attributes of

the vertices from two graphs, where s = vec(S) is the 1-d vectorized representation of S. Random
walk neural network (RWNN) [68] proposes to compute the revised RWK with t steps as:

Kt
rw−(G,H) = 1⊺(ss⊺ ⊙ At

G⊗H)1 , (3.3)
where ⊙ denotes the element-wise product. We identify that the RWK originally developed in
RWNN only enforces the same label at the beginning and end of two walks, while ignoring the
intermediates (Figure 3.3). We reformulate it to count a walk as shared only if all corresponding
node pairs exhibit the same node label (i.e. color) at all steps along the walk:

Kt
rw+(G,H) = 1⊺(ss⊺ ⊙ AG⊗H)

t1 , (3.4)
We further propose the improved graph kernel RWK+ through transforming its formulation for
efficient iterative computation in Algorithm 2.
RWK+CN learning descriptive hidden graphs. We propose RWK+CN (in Figure 3.4), with an
unsupervised objective that uses RWK+ as the core kernel and maximizes the total RWK similarity
between the graphs in the database and hidden graphs, which are reflective of the frequent walks (i.e.
patterns). Moreover, we use additional “structural colors” to help better capture structural similarity
between graphs, generated by a fixed randomly initialized GNN. We demonstrate the descriptive
learning ability of RWK+CN with our carefully designed testbeds in Table 3.2.
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RWK+Conv, a novel GNN layer. By unrolling RWK+, we discover that the derivation can be re-
written as a sequence (i.e. multiple layers) of graph convolutional operations, connecting with regular
GCN layers [40]. In Algorithm 2 (gray part), by viewing hidden graphs as learnable parameters, we
transform the RWK+ algorithm into a novel GNN layer called RWK+Conv. The RWK+Conv layer
brings better expressiveness than the GCN layer thanks to two major improvements:

1. Element-wise product operation with Y0 motivated from node color matching; and

2. Multi-step within a single convolution layer that shares the same parameter AH and XH .

3.3.3 Results

We evaluate RWK+ on supervised graph anomaly detection with 10 real-world chemical compound
graph databases. In Table 3.3, iGAD with our proposed RWK+ outperforms the original model
on all datasets (p-val <0.001). This suggests that the hidden graphs learned through RWK+ are
consistently better than the ones extracted by RWK, assisting iGAD in better detecting anomalous
graphs. In Figure 3.5, a graph classification base model with RWK+ is only slightly slower than
with RWK, although the overhead is negligible (< 1 second), and scales linearly.

We evaluate RWK+Conv on graph regression and classification with three real-world datasets,
ZINC, ogbg-molhiv and ogbg-molpcba. In Table 3.4, we find that RWK+Conv outperforms both
baselines significantly across all datasets and tasks. This empirically demonstrates the better
expressiveness of RWK+Conv than of GCNConv. We also report the run time per epoch on the
largest node classification dataset PubMed in Table 3.5, where RWK+Conv only creates negligible
computational overhead (less than 0.05 seconds).

Table 3.3: RWK+ works in graph anomaly detection on 10 real-world datasets. Recall is reported. iGAD
using our proposed RWK+ as structural feature extractor outperforms original iGAD on all datasets.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC-257
iGAD + RWK 75.1±1.1 74.1±0.8 77.9±1.2 78.6±0.9 78.7±1.3 78.8±0.3 83.1±1.7 78.3±1.1 79.4±0.6 78.0±1.0
iGAD + RWK+ 76.4±0.6 74.3±1.0 78.8±1.1 79.2±0.5 79.5±2.2 79.2±0.9 84.0±1.4 78.5±0.9 79.5±1.6 79.5±0.7
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Figure 3.5: Our efficient computation of RWK+ is
fast: Runtime of a base model computed by Algo-
rithm 2, regular Equation 3.4, and vanilla RWK.

Table 3.4: RWK+Conv wins in all 3 real-world
graph regression and classification datasets.

Dataset ZINC ogbg-molhiv ogbg-molpcba
Metric MAE ↓ ROC-AUC ↑ AP ↑
GCNConv 0.3258±0.0067 76.06±0.97 20.20±0.24
GINConv 0.2429±0.0033 77.78±1.30 22.66±0.28
RWK+Conv 0.2082±0.0025 78.61±0.61 24.90±0.12

Table 3.5: RWK+Conv is fast, with only negligible
runtime overhead in seconds.

Step Length 2 3 4 5
GCNConv 0.0269 - - -
RWK+Conv 0.0371 0.0464 0.0522 0.0619
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Chapter 4

Time Series Mining

4.1 Preliminaries

Group Anomaly Detection. Earlier group anomaly detection approaches [11, 65, 101] require
prior knowledge of group memberships, while the solution proposed by [114] requires information
on pairwise relations among data points. We assume that the observations X = {x1, . . . ,xn} are
given, where xi ∈ Rm. Since time series can be transformed into some form of m−dimensional
cloud, group anomaly detection can be easily implemented in time series. This has significant
potential because anomalies in time series data usually consist of a series of abnormal patterns,
rather than a single abnormal point, which is usually recognized as noise.

Time Series Anomaly Detection Consider a univariate time series x = {x1, x2, . . . , xK}, where
x is a sequentially ordered collection of K data points. Each xi ∈ R corresponds to a scalar
observation at each time step. Then, let Dtrn be a set of training data consisting of only normal
time series, and Dtest be a set of unlabeled test data containing both normal and anomalous time
series. For sequence-level anomaly detection, the problem is to detect all anomalous time series in
Dtest, i.e., to assign the accurate label yi ∈ {−1,+1} for each xi ∈ Dtest. For point-level anomaly
detection, the problem is to detect the anomalous time points, i.e., to assign the accurate label
yi = {y1, . . . , yK} for each xi ∈ Dtest, where yi ∈ {−1,+1}.
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4.2 GEN2OUT: Detecting and Ranking Generalized Anomalies -
Seizure Detection in EEG

Section based on work that appeared at Big Data 2021 [48][PDF].

4.2.1 Goal
How can we spot and rank point- as well as group-anomalies? How can we design an anomaly score
function, so that it assigns intuitive scores to both point-anomalies, as well as group-anomalies?
We refer to them as generalized anomalies. Our motivating application is seizure detection in EEG,
where the seizure is composed of a series of abnormal patterns in EEG signal. Our goal is to design
a principled and fast anomaly detection algorithm for a given cloud of m-dimensional point-cloud
data that provides a unified view as well as a scoring function for each generalized anomaly.

Problem 6. Detecting and Ranking Generalized Anomalies
(1) Given a point-cloud dataset from an application setting.
(2) Detect and rank point-anomalies and group-anomalies, i.e., generalized anomaly.

Correctly detected seizures

(a) EEG data (b) Heatmap of http
data

(c) Detected group
anomalies

Figure 4.1: (a) GEN2OUT matches ground truth. Brain scan of the patient with electrode positions (left),
and detected groups in red (right), matching the ground truth seizure locations. (b) Heatmap of http intrusion
detection dataset, and (c) GEN2OUT correctly spots group (DDoS) attacks, marked GA1, GA2 and GA3.

4.2.2 Approach

We propose GEN2OUT, an anomaly detector that detects generalized anomalies, i.e., point-anomalies
and group-anomalies. The main insight is to exploit sampling, which drops the point-anomalies
and make the group-anomalies become point-anomalies. To ensure that the anomaly scores are
comparable across (sampled) datasets, we propose GEN2OUT0 as the based detector of GEN2OUT,
which obeys carefully designed 5 axioms. In Figure 4.1, GEN2OUT detects group anomalies that
correspond to seizure period in the patient; and, detects DoS/DDoS attack as group anomalies.
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b

(a) A1: Distance
Axiom

a b

(b) A2: Density
Axiom

a
b

(c) A3: Radius
Axiom
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180o

90o

(d) A4: Angle Ax-
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a b
b'

(e) A5: Group Ax-
iom

Figure 4.2: Illustration of Axioms.

Table 4.1: GEN2OUT wins as it obeys all the axioms a generalized anomaly detector should follow. We
compare the methods statistically, by conducting two-sample t-test based on scores obtained for points a, b.
A positive difference in score indicates that the detector follows that axiom (see Figure 4.2). indicates that
the detector follows the axiom, indicates that the detector does not obey the axiom.

LODA [72] RRCF [30] IForest [61] GEN2OUT0

Statistic p-value Statistic p-value Statistic p-value Statistic p-value
A1: Distance Axiom 0 1 3.6 0.002** 2.1 0.054 11.4 1.2e-9***
A2: Density Axiom 7e15 2e-275*** -0.14 0.89 -10 8.6e-9*** 25.2 1.7e-15***
A3: Radius Axiom 0 1 6.4 4.8e-6*** 11.9 5.9e-10*** 21.3 3.4e-14***
A4: Angle Axiom 6.6 3.2e-6*** 17.5 9.6e-13*** -0.2 0.83 53.7 2.5e-21***
A5: Group Axiom -14.7 1.8e-11*** 1.1 0.27 0.95 0.35 28.2 2.6e-16***

GEN2OUT0. We propose 5 axioms (see Figure 4.2) to examine whether an anomaly detector is
provided with the ability to compare the scores across datasets: producing higher anomaly scores
when an instance is farther away from data kernel (distance aware), or lies in low density locality
(density, radius and group aware), and not aligned with majority of data (angle aware [45]).

Moreover, we discover an insight of ATOMICTREE. Given X = {x1, . . . ,xn}, ATOMICTREE is
grown through recursive division of X by randomly selecting an attribute and a split value until all
the leaf nodes contain exactly one instance of observations. We observe the following property:
Insight 1 (Power Depth Property). The growth of the tree depth with the logarithm counts of
observations is linear irrespective of the data distribution.

Finally, we propose GEN2OUT0, of which Isolation Forest (IForest) [61] is a special case, and it
fulfils all the axioms. The major differences between GEN2OUT0 and IForest are:

1. Random ATOMICTREE construction with all data points: allows GEN2OUT0 to be aware
of the distance between normal and anomalous points; while IForest samples the data points
and excludes the anomalous points during construction in most cases.

2. Data-dependent ATOMICTREE depth estimation: allows GEN2OUT0 to give more accurate
anomaly scores by fitting a linear regression model based on Insight 1; while IForest treats all
datasets the same with a fixed average path length function.

The scoring function of GEN2OUT0 is based on depth, where the shallower a given sample point is
in ATOMICTREE (easier to separate it from the majority), the more anomalous. In Table 4.1, we
demonstrate that GEN2OUT0 is the only anomaly detector fulfilling all axioms, and thus can be used
in GEN2OUT to detect group-anomalies.
GEN2OUT. We propose GEN2OUT, which spots and scores both point- as well as group-anomalies.
The idea is that, with a sampling rate of a point of the group anomalies will be stripped of its
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cohorts, and thus behave like a point-anomaly, exhibiting a high anomaly score. We refer to
this sampling process as ‘qualification’, and to the sampling rate as ‘qualification rate’ q. Q =
{1, 1/21, 1/22, . . . , 1/210} denotes the set of qualification rates. We firstly need some definitions:
Definition 2 (X-ray line). For a given data point xi, the X-ray line is {GEN2OUT0(xi, q), q}.
Definition 3 (X-ray plot). For a cloud of n points, the X-ray plot is the 2-d plot of all n X-ray lines.
Definition 4 (Apex). Apex of point xi is the point with the highest anomaly score among Q, i.e.,
maxq∈Q GEN2OUT0(xi, q).
The procedure of GEN2OUT is as follows: (1) In Figure 4.3b, it plots the X-ray plot for each data
point. (2) In Figure 4.3c, it extracts the apex for each data point and keep those with scores that are
three standard deviation higher than the mean score. (3) In Figure 4.3d, it groups the anomalies
with a clustering algorithm. (4) In Figure 4.3e, it scores each anomaly with the distance between its
apex and the most anomalous point {GEN2OUT0 score = 1, q = 1} (top right) on the X-ray plot.
(5) In Figure 4.3f, it outputs the score of each group-anomaly by averaging the scores in the group.

4.2.3 Results

In Figure 4.3, GEN2OUT matches the ground truth as it detects three group-anomalies, which
correspond to DDoS attacks. In Figure 4.4, GEN2OUT detects the ground truth seizure by giving the
corresponding group-anomaly the highest score. It distinguishes seizure as a series of anomalies
(group-anomaly) on time series, and filters out unintentional noises (point-anomaly).

(a) Data heatmap (b) X-ray plot (c) Apex extrac-
tion

(d) Outlier group-
ing

(e) Anomaly iso-
curves

(f) Scoring

Figure 4.3: GEN2OUT detects DDoS attacks on intrusion detection http dataset.

(a) Heatmap of tSNE
representation of data

(b) X-ray plot (c) Apex extrac-
tion

(d) Outlier group-
ing

(e) Anomaly iso-
curves

(f) Scoring

Figure 4.4: GEN2OUT works on real-world EEG data. Assigns highest anomaly score to group anomaly
GA2 that corresponds to seizures as shown in Figure 4.1a.
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4.3 TSAP: Self-tuning Self-supervised Time Series Anomaly
Detection

Section based on work that is under review.

4.3.1 Goal
Given a time series dataset, how can we determine the characteristics of the anomalies? The
anomalies in the dataset may have the same characteristics (or hyperparameters), such as starting
location, duration, or severity. How can we use this information to better detect anomalies? Our
goal is to propose a framework that automatically detects the hyperparameters of the anomalies by
fine-tuning, and leverages this for better sequence-level time series anomaly detection. To enable a
gradient-based optimization of hyperparameters, a differential augmentation model pre-trained with
pseudo anomalies is needed.

Problem 7. Sequence-Level Time Series Anomaly Detection (TSAD)
(1) Given Dtrn = {x1, . . . ,x|Dtrn|} containing only normal time series, and Dtest =
{x1, . . . ,x|Dtest|} containing both normal and anomalous time series without labels.

(2) Predict the label yi ∈ {−1,+1} for each time series xi ∈ Dtest, where yi = +1 denotes
there is at least one anomaly in xi.

Self-Tuning Module

Online

Augmentation Module

Offline

Encoder

Update

MLP Encoder

Decoder

Encoder

Update
MLP

Figure 4.5: TSAP framework for end-to-end self-tuning TSAD. Left: Offline trained, differentiable augmen-
tation model faug(·;ϕ) takes as input the normal data and augmentation hyperparameter(s) a, and outputs
pseudo-anomalies x̃aug. Right: Self-tuning engine incorporates the pre-trained faug, alternating between two
phases: (i) detection phase – given a(t) at iteration t, estimate parameters θ(t) of detector fdet, by optimizing
Ltrn (binary classification loss); (ii) alignment phase – given f enc

det (·;θ
(t)), update augmentation (governed by

a) to better align the embeddings ztrn ∪ zaug with zval. Note that xval contains both normal and anomalous
time series, but labels are not known or used at any point during training time.
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4.3.2 Approach
We aim to use gradient-based optimization to update the continuous hyperparameters of the anoma-
lies, so that we can generate pseudo anomalies and train the anomaly detector in a self-supervised
learning (SSL) manner. However, there are two notable challenges:

1. Differentiable Augmentation: Developing an augmentation function that is differentiable
with respect to its hyperparameters, enabling gradient-based hyperparameter optimization.

2. Comparable Validation Loss: Formulating a validation loss that quantifies alignment
between Dtrn ∪ Daug and Dtest, which contain both normal and anomalous time series.

To solve these challenges, we propose TSAP with following contributions:
1. Differentiable Augmentation Module: In Figure 4.5 left, TSAP implements the augmen-

tation function faug to generate pseudo anomalies conditioned on a ∈ AP , where AP is the
domain of all possible hyperparameter values. This module is pre-trained independently,
establishing it as an offline component of the framework.

2. Self-Tuning Module: In Figure 4.5 right, at test time (online), TSAP iteratively refines
the detector fdet’s parameters θ and augmentation hyperparameters a, through alternating
detection and alignment phases. Alignment is performed on part of the unlabeled Dtest,
referred to as Dval. This is illustrated in Figure 4.6.
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Figure 4.6: TSAP improves alignment between Dtrn ∪ Daug and Dtest over iterations by tuning a.

Differentiable Augmentation Module. We propose an anomaly generation scheme g by carefully
considering 6 types of common time series anomalies; namely, trend, extremum, amplitude, mean
shift, frequency shift, and platform (in Figure 4.7). Each type of anomaly has three hyperparameters;
including its starting position (location), duration (length), and severity (level). Based
on Dtrn, g creates an augmented dataset Daug = {g(xtrn; a) | xtrn ∈ Dtrn, a ∼ AP}, where a is
randomly sampled in AP . Its loss function is based on the reconstruction of both Dtrn and Daug:

Laug =
1

|Dtrn|
∑

xtrn∈Dtrn

a∼AP

(xtrn − x̃trn)
2 +

(
g(xtrn, a)− faug(xtrn; a)

)2 (4.1)

Self-Tuning Module. The self-tuning module of TSAP operates by iteratively refining the detector’s
parameters θ, and the augmentation hyperparameters a. The process is structured into two phases:

1. Detection Phase: This focuses on estimating the parameters θ(t) of the detector fdet by
minimizing the cross-entropy loss Ltrn. This aims to classify between the normal samples
xtrn and the augmented pseudo anomalies x̃aug by their embeddings Ztrn and Zaug.
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2. Alignment Phase: This adjusts a to optimize the unsupervised differentiable validation loss
Lval, computed based on the embeddings from the updated f enc

det . Following [111], Lval’s
objective is to measure the degree of alignment betweenDtrn∪Daug andDval in the embedding
space by the Wasserstein distance.
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Figure 4.7: Examples of 6 different types of time se-
ries anomalies: original time series in black, and pseudo
anomalies generated by g in red.

Figure 4.8: TSAP works. Augmentation hyper-
parameters level and length, are accurately
tuned to near-true values (left), guided by val.
loss (center), achieving high AUROC (right).

4.3.3 Results
We evaluate TSAP on 6 tasks: 4 in a controlled setting (manually injected anomaly type) using the
PhysioNet ECG data, and the remaining 2 with natural anomalies (unknown real-world anomaly
type) using the MoCap data. In Table 4.2, TSAP outperforms all baselines in most cases and
achieves the best average rank among all baselines. While some competing methods perform
strongly on a subset of tasks, they lack consistency across all TSAD tasks. In Figure 4.8, TSAP
accurately tunes the hyperparameter of anomalies.

Table 4.2: TSAP is accurate, which outperforms most baselines and has the best (lowest) average rank.
Detection performance of baselines w.r.t. F1 and AUROC on test data across 6 tasks.

Methods
PhysioNet A PhysioNet B PhysioNet C PhysioNet D MoCap A MoCap B Avg. Rank

F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

OC-SVM 0.182 0.468 0.182 0.472 0.373 0.803 0.393 0.806 1.000 1.000 0.546 0.806 7.2 (3.7) 6.8 (3.3)
LOF 0.999 1.000 0.999 1.000 0.354 0.738 0.358 0.725 0.196 0.506 0.221 0.577 6.8 (3.9) 6.5 (4.4)
ARIMA 0.885 0.960 0.829 0.965 0.991 0.999 0.999 0.999 0.870 0.955 0.225 0.537 4.3 (3.2) 4.7 (3.7)
IF 0.255 0.587 0.232 0.576 0.183 0.402 0.182 0.356 0.864 0.965 0.342 0.758 8.8 (1.7) 8.7 (1.9)
MP 0.812 0.743 0.812 0.744 0.280 0.712 0.284 0.734 1.000 1.000 1.000 1.000 5.0 (3.6) 4.8 (3.4)

EncDec-LSTM 0.190 0.508 0.190 0.508 0.415 0.812 0.442 0.819 0.980 0.999 0.909 0.996 6.5 (2.0) 6.7 (1.9)
SR-CNN 0.965 0.990 0.964 0.998 0.983 0.999 0.991 0.999 0.302 0.700 0.214 0.512 5.2 (4.2) 4.8 (4.5)
USAD 0.183 0.425 0.184 0.428 0.430 0.822 0.409 0.828 1.000 1.000 1.000 1.000 5.5 (4.0) 5.7 (4.5)
NeuTraL-AD 0.211 0.732 0.263 0.679 0.561 0.868 0.526 0.862 1.000 1.000 1.000 1.000 4.2 (2.9) 3.8 (2.5)
TimeGPT 0.327 0.714 0.318 0.711 0.218 0.580 0.217 0.525 0.348 0.743 0.385 0.683 8.0 (1.9) 8.3 (1.6)

TSAP 1.000 1.000 1.000 1.000 0.973 0.999 0.991 0.998 0.889 0.969 1.000 1.000 2.3 (2.0) 2.2 (2.0)
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4.4 [Proposed] Detecting and Characterizing Time Series Anoma-
lies Automatically

4.4.1 Goal
Given a multivariate time series dataset, how can we tell what kinds of anomalies are there in the
dataset? How can we further leverage these understanding of anomalies to better detect them? In
Chapter 4.3, the method only works when the anomalies in the dataset share the same type and
hyperparameters and training the decoder in the augmentation model is difficult. Therefore, we aim
to improve the previous work by training the encoder with contrastive learning, and searching for
the hyperparameters with automated machine learning (AutoML). Our proposed method not only
detects the anomalies, but also gives the user insight of them for further analysis.

Problem 8. Point-Level Time Series Anomaly Detection (TSAD)
(1) Given Dtrn = {x1, . . . ,x|Dtrn|} consisting of only normal time series, and Dtest =
{x1, . . . ,x|Dtest|} containing both normal and anomalous time series without labels.

(2) Predict yi = {y1, . . . , yK} for each xi ∈ Dtest, where K is the length of each time series
and yi ∈ {−1,+1}.

4.4.2 Approach
Given a set of normal time series data, we generate various types of pseudo anomalies, such as
platform, mean shift, spike, and frequency. We then pre-train a time series encoder using contrastive
learning [70, 83], ensuring that in the embedding space:

1. Anomalies of the same type and with similar hyperparameters should be close.

2. Anomalies of different types should be far apart.

3. Anomalies should be distant from normal data.
Our encoder generates time series embeddings capable of recognizing the hyperparameters of
anomaly, such as anomaly severity, duration, and ratio within the dataset. It also ensures a smooth
alignment loss using the Wasserstein distance. Therefore, we adopt Bayesian optimization to
automatically search for the optimal hyperparameters that minimize the alignment loss between the
embeddings of the testing and augmented data (which includes normal and pseudo anomalies).

4.4.3 Future Work
Our proposed method is evaluated using a synthetic dataset containing two types of anomalies,
namely platform and mean shift. Using AutoML [37, 67], Bayesian optimization has been shown to
precisely search for the hyperparameters of true anomalies. However, when more types of anomalies
are included, a more powerful encoder is required. In this case, we consider combining a fixed time
series foundation model with a trainable projection head. Finally, we need to enable our method to
identify the location of anomalies in the time series data.
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Chapter 5

Applications

5.1 Preliminaries

MDL for Anti-Human Trafficking The Minimum Description Length principle (MDL) [76]
assumes that the best model M ∈ M for data di ∈ D minimizes C(D,M) = C(M) + C(D|M),
where C(di) is defined as the cost, in bits, needed to describe di losslessly. In anti-human trafficking,
D represents a set of escort advertisements, and M are text templates with “slots”. Slots are used
to represent certain types of information, such as time, location, or age. MDL penalizes both
the model cost C(M), as well as the encoding of errors from the model C(D|M). In short, it
automatically searches for the best text templates M by minimizing the bits C(M) needed to
describe the templates, and the bits C(D|M) needed to recover the ads from templates.
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5.2 DELTASHIELD: Information Theory for Human-Trafficking
Detection

Section based on works appeared at ICDE 2021 [49][PDF] and TKDD 2023 [89][PDF].

5.2.1 Goal
Given a million escort advertisements, how can we spot near-duplicates? Such micro-clusters of
ads are usually signals of human trafficking. How can we visually summarize them to convince
law enforcement to act? That is, given a set of text documents, our goal is to propose an algorithm
for near-duplicate detection and summarization. These near-duplicates are usually recognized as
organized crime activity in human trafficking, or spam in Twitter bot detection.

Problem 9. Near-Duplicate Detection and Summarization
(1) Given a set of text documents.
(2) Detect near-duplicates/micro-clusters among documents.
(3) Summarize the documents with the templates visually.

Figure 5.1: INFOSHIELD works: being precise (left), scalable (middle), and interpretable (right), detecting
and visualizing slots (in red), i.e. portions of tweets that highly differ between otherwise duplicate documents.

5.2.2 Approach
We propose INFOSHIELD, an information theory based algorithm, which uses the Minimum
Description Length (MDL) principle to find good templates. A template represents a cluster of text
documents, with “slots”, i.e., parts of the template that differ for each document (highlighted red
in Figure 5.1). Next, we propose DELTASHIELD, an incremental version of INFOSHIELD, which
incrementally updates the templates without re-doing the template search process. It automatically
assigns the new incoming documents to the existing templates, or generates new templates if needed.
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(a) Step 1: Candidate Alignment

(b) Step 2: Consensus Search

(c) Step 3: Slot Detection

Figure 5.2: Example pipeline of INFOSHIELD : The output after each step of INFOSHIELD.

INFOSHIELD A quick algorithm is firstly used to create coarse-grained clusters of documents with
high text similarity (omit for brevity). Then, INFOSHIELD is composed of three steps:

1. Candidate Alignment (Figure 5.2a): identifies the candidate set for a template by aligning
documents with multiple sequence alignment (MSA). Given data D from one cluster, we first
represent documents as line graphs and align them with the first document d1 individually
and then calculate the cost C(d|d1) and C(d) for every d ∈ D; if C(d|d1) is smaller than
C(d), we add d to the set Di containing all similar documents found in iteration i. Finally,
we generate the alignment Ai with all documents in Di.

2. Consensus Search (Figure 5.2b): searches for the best consensus document in the alignment.
We decide which tokens are part of the template, and which are insertions/deletions/substitutions
by MDL. We only keep edges between words that occur more than h times in Ai. We search
for the best threshold h∗

i to generate the consensus of alignment T ′
i at the lowest cost.

3. Slot Detection (Figure 5.2c): detects slots in the consensus document to generate a template.
We first recognize the operation types of words by each alignment a ∈ Ai, which are either
insertions or substitutions. We identify which words each potential slot p contains in the given
consensus document T ′

i , and only keep slots that decrease the total cost and store them in Ti.
DELTASHIELD We propose DELTASHIELD to incrementally update the templates, which includes
a preprocessing step and a template update step. The preprocessing step encodes an incoming
document using existing templates in its coarse cluster and selects the one that results in the lowest
cost. To address the high time complexity of examining all the existing templates, we adopt an
early-stopping (ES) mechanism. We order the templates by the lengths of intersection between
unigrams in the incoming document and each template. Then, we select the first template that
lowers the encoding cost of the document. Once the new documents are added to a template, its
representation will be slightly changed. Hence, we update the template every t batch.
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5.2.3 Results
We report the experiments in Table 5.1. In Twitter data, INFOSHIELD always performs within ten
points of the top contender, despite using no features specific to Twitter. In HT data, INFOSHIELD

reports the highest precision; this avoids giving false positives to law enforcement.
For interpretability, in Table 5.2, we give a description of the type of text they represent for the

slots. Notice that slots tend to include consistent user-specific information. For example, the second
slot, if not empty, always discusses time, “until 9pm”, “9 P.M”, etc.

Next, we compare DELTASHIELD with update frequency every batch and every three batches.
In Figure 5.3a, as the number of incoming batches increases, the gap between two methods also
increases. Nevertheless, the running time of updating every three batches in Figure 5.3b is 1.4 times
and 2.8 times faster than the one of updating every batch and INFOSHIELD, respectively.

Twitter Data
Dataset Test Set #1 Test Set #2
Metric ARI Prec. Rec. F1 ARI Prec. Rec. F1

INFOSHIELD 83.2 93.0 91.2 92.1 75.7 96.7 88.9 92.6
Cresci n/a 98.2 97.2 97.7 n/a 100.0 85.8 92.3

BotOrNot n/a 47.1 20.8 28.9 n/a 63.5 95.0 76.1
Yang n/a 56.3 17.0 26.1 n/a 72.7 40.9 52.4

Ahmed n/a 94.5 94.4 94.4 n/a 91.3 93.5 92.3

Human Trafficking Data
Dataset Trafficking10k Cluster Trafficking
Metric Prec. Rec. F1 Prec. Rec. F1 ARI

INFOSHIELD 84.8 50.7 63.5 85.4 99.8 92.0 43.1
Word2Vec-cl 19.4 10.7 13.8 71.7 99.5 83.1 9.6
Doc2Vec-cl 25.6 10.9 15.3 74.2 98.8 84.7 16.2
FastText-cl 28.4 22.4 25.1 69.6 99.6 81.9 6.8

HTDN 71.4 62.2 66.5 — — — n/a

Table 5.1: INFOSHIELD performs well: INFOSHIELD outperforms or approaches the best domain-specific
method in both settings. shows the best score, shows the methods within 10 points of the best. are
supervised method, while INFOSHIELD is unsupervised.

Constant Slot Insertion Deletion Substitution

T1 not shown for victim’s safety
#1 (empty) time (empty) (empty)
#2 personal description time (empty) cost
#3 (empty) time (empty) cost
#4 personal description (empty) preferences cost
...18 similar ads

Table 5.2: INFOSHIELD works for human-trafficking detection: detects the template from HT dataset.
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Figure 5.3: DELTASHIELD offers strong trade-off: (a) shows large update frequency loses effectiveness
increasingly over time (20K / batch); (b) shows increasing update frequency leads to a much lower run time.
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5.3 [Proposed] Fraud Detection in Temporal Financial Graphs

5.3.1 Goal
Given a bipartite temporal graph, how can we detect anomalous edges? In a financial graph, the
source and target nodes represent customers and merchants, respectively, and the edges correspond
to the transactions between them. More specifically, how can we detect fraudulent transactions in
such a financial graph? In addition, fraudulent activities can be categorized into different types. Our
goal is to propose an interpretable anomaly detection method that identifies both point and group
anomalies, while also providing explanations to the user.

Problem 10. Fraud Detection in Temporal Financial Graphs
(1) Given a bipartite and temporal financial graph.
(2) Detect fraudulent transactions.
(3) Explain to the user why these transactions are recognized as fraudulent.

5.3.2 Approach
We plan to separate our method into three major steps:

1. Feature Selection: Given thousands of features, most are not useful for detecting anomalies,
and including them may significantly hurt performance. Therefore, using a few labeled
anomalies, we plan to apply sequential forward feature selection to find a small subset of
effective features.

2. Graph Feature Construction: We plan to construct features using linear GNNs. However,
in the bipartite graph, merchants do not have features, so we will propagate the customer
features from two steps away.

3. Group Anomaly Detection: We plan to begin by using GEN2OUT, introduced in Chapter 4.2.

5.3.3 Future Work
In the future, we plan to improve each step of our method. For feature selection, due to the small
fraction of labeled data, the final selection may easily overfit. Furthermore, features that are highly
correlated with the selected ones should be excluded. For graph feature construction, relying on
two-step neighbors may not be the most effective approach for spotting anomalies, and this requires
further analysis. Utilizing temporal features with feature propagation also remains a challenge. For
group anomaly detection, we aim to further enhance GEN2OUT, improving its effectiveness.
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5.4 [Proposed] An Agentic Framework for Graph Retrieval-
Augmented Generation

5.4.1 Goal
Given a question, a database containing unstructured documents and knowledge graphs (KGs), can
we tell which context from the database is useful for a large language model (LLM) to answer the
question? In addition to a single text knowledge base in Retrieval-Augmented Generation (RAG),
Graph RAG (GRAG) includes KGs as an additional knowledge base. In other words, in GRAG,
can we identify whether we need the context from a graph retriever, a text retriever, or neither, to
answer the question? Providing an LLM with all available contexts can introduce noise, potentially
leading to an incorrect answer. Moreover, given only one opportunity, it is difficult to make the
correct decision directly. Therefore, we aim to propose an agentic framework for GRAG.

Problem 11. Graph Retrieval-Augmented Generation (GRAG)
(1) Given a database that includes free-text documents and knowledge graphs (KGs).
(2) Select the appropriate retriever to retrieve the context for answer generation.
(3) Optimize the action for retriever-use through self-reflection.

5.4.2 Approach
We propose an agentic framework for GRAG that includes two novel contributions:

1. Retriever-Use: Similarly to the terminology tool-use, the agent interacts with the retriever
bank and selects the most appropriate retriever to answer the question. Our proposed retriever
bank contains both text and graph retriever modules. They can be used for solving questions
that need contexts from different sources, e.g., web search and KGs.

2. Self-Reflection: We propose a critic that includes a validator and a commentor. The validator
decides whether to continue optimizing the agent’s action based on the correctness of the
output. If the output is rejected, the commentor leverages in-context learning and generates
feedback for the agent to adjust its action.

Moreover, our method can be used with any pre-trained LLMs, which avoids expensive fine-tuning
and issues such as catastrophic forgetting [86].

5.4.3 Future Work
We are currently working on implementing our method and the baselines on two GRAG benchmarks,
namely STARK [99] and CRAG [105]. While STARK focuses on evaluating the retrieval capability
of our method, CRAG focuses on evaluating both the retrieval and generation capabilities. We also
need a comprehensive ablation study to justify the design choices of our method.
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Chapter 6

Timelines

My expected timeline is provided in Table 6.1.

Table 6.1: Expected Timeline.

Time Tasks Expected Outputs

October 2024 Thesis Proposal
November 2024 - February 2025 Paper Writing (Chapter 4.4, 5.3, and 5.4) Three New Conference Papers
March 2025 - May 2025 Job Application and Interview
June 2025 - August 2025 Thesis Writing
September 2025 Thesis Defense
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Chapter 7

Conclusions

In this thesis, we propose various explainable approaches to address the limitations of black-box
machine learning methods. These methods are either inherently explainable, or provide explanations
of the data or decision-making process to users. Specifically, we focus on designing algorithms and
solving applications related to graph and time series data. In the first and second parts of this thesis,
we propose graph mining algorithms to solve node-level and graph-level tasks, respectively. Our
node-level algorithm outperforms competitors on 11 out of 12 datasets in link prediction, while
our graph-level algorithm improves mean absolute error by 14.3% in graph regression. In the third
part, we introduce time series anomaly detection algorithms that provide users with insights into the
datasets. Our group anomaly detection method requires only 2 minutes to run for 1 million data
points. In the final part, we address various applications using graph algorithms, including anti-
human trafficking, fraud detection in financial graphs, and graph retrieval-augmented generation.
Our method detects human trafficking with 84% precision. For reproducibility and the benefit of
the community, we make most of the algorithms and datasets used in this thesis publicly available
at https://mengchillee.github.io/.
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Appendix A

Related Works

Message Passing Baselines

FABP [44] and LINBP [28] accelerate BP by approximating the final assignment of beliefs. HOLS
[25] is a BP-based method, which propagates labels by weighing with higher-order cliques.

There exist many recent GNN variants; recent surveys [100, 116] group them into spectral
models [22, 40, 102], sampling-based models [33, 108, 113, 119], attention-based models [10,
39, 62, 90], and deep models with residual connections [12, 56]. Decoupled models [13, 41, 42]
separate the two main functionalities of GNNs: the node-wise feature transformation and the
propagation. MIXHOP [1], GPRGNN [13], and H2GCN [119] make no assumption of homophily.
GNNs are often fused with graphical inference [36, 109] to further improve the predicted results.

The first linear GNN, SGC [98], removes the nonlinear activation functions of GCN, reducing the
propagator function to a simple matrix multiplication. [96] and [117] improved SGC by manually
adjusting the strength of self-loops with hyperparameters, increasing the number of propagation
steps. G2CN [57] improves the accuracy of DGC [96] on heterophily graphs by combining multiple
propagation settings (i.e. bandwidths).

In graph anomaly detection, graph embedding can be used to detect anomalous graphs in
conjunction with off-the-shelf anomaly detectors. node2vec [29] could highly identify graph
structures with biased random walks using BFS and DFS. graph2vec [66] uses document embedding
neural networks to embed node-labeled graphs. Node embedding methods could also be used in
graph embedding by averaging the embedding of nodes. iGAD [115] incorporates random walk
kernels as a structural feature extractor to identify graph-level anomalies.

Time Series Anomaly Detection (TSAD) Baselines

The traditional TSAD methods consist of different modeling approaches; namely, one-class support
vector machines [80]; local outlier factor [9]; ARIMA [8]; isolation forest [61]; and matrix profile
[107]. On the deep learning side, we benchmark against the encoder-decoder LSTM [63]; spectral
residual cnvolutional neural network [75]; unsupervised anomaly detection for TSAD [6]; a time
series foundation model called TimeGPT [27]; and a method that learns augmentations in the
embedding space, called neural transformation learning [73].
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Near-Duplicate Detection Baselines

Most state-of-the-art methods for HT detection are not open-source. Instead, we compare against
HTDN [87], which uses the same Trafficking10k dataset, and develop three baselines using state-
of-the-art text embedding methods Word2Vec [64], FastText [7], and Doc2Vec [46]. In Twitter
data, we compare with three supervised methods [2, 20, 104] and one unsupervised method [18].
All of these methods use Twitter-specific features, such as number of mentions, favorites, retweets,
posting time, etc.
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Appendix B

Datasets

Real-World Homogeneous Graphs

Table B.1: Graph dataset statistics. The first 7 datasets are homophily, and the last 6 are heterophily graphs.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1433 7
CiteSeer 3,327 4,732 3703 6
PubMed 19,717 44,338 500 3
Computers 13,752 245,861 767 10
Photo 7,650 119,081 745 8
ogbn-arXiv 169,343 1,166,243 128 40
ogbn-Products 2,449,029 61,859,140 100 30

Chameleon 2,277 36,101 2325 5
Squirrel 5,201 216,933 2089 5
Actor 7,600 29,926 931 5
Penn94 41,554 1,362,229 4814 2
Twitch 168,114 6,797,557 7 2
Pokec 1,632,803 30,622,564 65 2

In Chapter 2.2, we include 3 citation networks: “arXiv-Year” [35], “Patent-Year” [55], and
“arXiv-Category” [95], and 4 social networks: “Pokec-Gender” [84], “Facebook” [78], “GitHub”
[78], and “Pokec-Locality” [84].

In Chapter 2.3 and 2.4, we use 7 homophily and 6 heterophily graph datasets in experiments.
Table B.1 shows a summary of dataset information. Cora, CiteSeer, and PubMed [81, 106] are
homophily citation graphs between research articles. Computers and Photo [82] are homophily
Amazon co-purchase graphs between items. ogbn-arXiv and ogbn-Products are large homophily
graphs from Open Graph Benchmark (OGB) [34]. Since we use only 2.5% of all labels as training
data, we omit the classes with instances fewer than 100. Chameleon and Squirrel [79] are heterophily
Wikipedia web graphs. Actor [85] is a heterophily graph connected by the co-occurrence of actors
on Wikipedia pages. Penn94 [60, 88] is a heterophily graph of gender relations in a social network.
Twitch [77] and Pokec [54] are large graphs, which have been relabeled by [60] to be heterophily.
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In Chapter 2.4, we also conduct experiments on 3 link prediction datasets from OGB [34],
namely ogbl-ddi, ogbl-collab, and ogbl-ppa.

Graph Databases

Table B.2: Summary of graph databases.

Name Graphs Nodes [min, max] Edges [min, max]
UCI Message Dataset [71] 3320 [2, 159] [1, 193]
Enron Email Dataset [43] 843 [2, 87] [1, 127]

Accounting Dataset 16,026 [2, 13] [1, 20]
Random Accounting Dataset 15,935 [2, 13] [1, 18]

In Chapter 3.2, we use four datasets illustrated in Table B.2. The detailed description of all
datasets are shown as follows:

• UCI Message Dataset [71]: This recorded the communications between students at UCI
where nodes and edges denote students and messages respectively. To capture the role
information, we adopt role2vec [3] to embed nodes in the complete graph, and use the 10
groups clustered by Agglomerative Clustering as the node labels. The data is split into hours
to form a graph database.

• Enron Email Dataset [43]: This contains the emails passing between colleagues in Enron
Company from 2000 to 2002. We assign the job positions to each employee as node labels.
The data is split into day communication graphs to form a graph database.

• Accounting Dataset: This is from an anonymous institution, containing accounts (nodes)
and transactions (edges) that precisely reflect the money flow between company accounts.
Each graph captures a set of transactions within a unique expense report.

• Random Accounting Dataset: Since the accounting dataset is proprietary, we generate a
synthetic database with generated graphs following the same statistical characteristics as in
the accounting graphs.

In Chapter 3.3, we evaluate supervised graph anomaly detection with 10 real-world datasets
from PubChem [103], as in [115]. Each graph is a chemical compound and labeled by its outcome
from anti-cancer screen tests (active or inactive). For graph regression and classification, we use
three real-world datasets, ZINC [23], ogbg-molhiv and ogbg-molpcba [35].

Anomaly Detection Datasets

In Chapter 4.2, we analyzed intracranial electroencephalographic (EEG) signals recorded at the
Epilepsy Monitoring Unit of a large public universityfrom one patient with refractory epilepsy.
Electrodes were stereotactically placed in the brain and EEG signals were then recorded across
122 electrode contacts at a sampling rate of 2KHz with focal region in the right temporal lobe.
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Our benchmark set consist of real-world outlier detection datasets from ODDS repository [74].
The datasets cover diverse application domains and have diverse range dimensionality and outlier
percentage. The ODDS datasets provide ground truth outliers that we use for the quantitative
evaluation of the methods.

In Chapter 4.3, for controlled tasks, we use the 2017 PhysioNet Challenge dataset [15], which
includes real-world ECG recordings. The natural TSAD tasks are derived from the CMU Motion
Capture (MoCap) dataset 1. Table B.3 shows the anomaly profiles of all TSAD tasks.

Table B.3: Anomaly profile of different TSAD tasks.

Dataset Type Level Location Length

Ph
ys

io
N

et PhysioNet A Platform Fixed Random Random
PhysioNet B Platform Fixed Random Fixed
PhysioNet C Trend Fixed Random Random
PhysioNet D Trend Fixed Random Fixed

M
oC

ap MoCap A Jump Fixed Random Random
MoCap B Run Fixed Random Random

Near-Duplicate Detection Datasets

In Chapter 5.2, we use Twitter bot detection data from [19]. This data includes the tweet text and
user id. The Trafficking 10k dataset is created in [87], where expert annotators manually labeled
10,265 ads from 0-6. 0 represents “Not Trafficking”, 3 represents “Unsure”, and 6 represents
“Trafficking”.There are 6,551 ads labeled as not HT, 354 labeled as “Unsure”, and 3,360 labeled as
HT. Cluster Trafficking is a new dataset provided by Marinus Analytics. This data contains cluster
labels, provided by domain experts, for both HT and spam advertisements. It consists of 157,258
ads, with 6,283 spam ads, 50,985 HT ads, and 99,990 normal ads.

1http://mocap.cs.cmu.edu/
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